e

HP 75000 SERIES B

w . !
I g en e o L
VRIS EY, & 'E"i;-E‘:‘w.‘?."‘z;j',?y‘:z‘“:;»',.“g:_‘

[, s :
e Eiranhd
H

Lot
SRR P Y B

Quad 8-Bit Digital 1/O Mamﬂe
HP E1330A/B

User’s Manual

(ﬁf’ HEWLETT

PACKARD

Copyright © Hewlett-Packard Company, 1992

AR

E1330-80003
ED492

Manual Part Number: E1330-90003 Printed: APRIL 1992 Edition 3

Microfiche Part Number: E1330.99003 Printed in US. A,

I HP 75000 SERIES B

Quad 8-Bit Digital 1/O Module
HP E1330A/B

]
User’s Manual

A oackaro

Copyright © Hewlett-Packard Company, 1992

Manuai Part Number: E1330-90003 Printed: APRIL 1992 £dition 3
Microfiche Part Number: E1330.99003 Printed in ULS AL

CERTIFICATION

Hewlet-Packard Company centifies that this product met its published specifications at the time of shipment Jrom
the factory. Hewlett-Packard further certifies that its calibrazion measurements are traceable to the United States Na-
tional Institute of Standards and Technology (formeriy National Bureau of Standards), to the extent allowed by that
organization’s calibration facility, and to the calibration facilities of other Intemational Standards Organization
members.

WARRANTY

This Hewiett-Packard product is warranted against defects in materials and workmanship for a period of three years from date of ship-
ment. Duration and conditions of warraaty for this product may be superceded when the product is integrated into {becomes a part of)
other HP products. During the warranty period, Hewlett-Packard Company will, at its option, either repair of replace products which
prove to be defective.

For warranty service or repaiz, this product must be returned to a service facility designated by Hewlett-Packard (HP). Buyer shall prepay
shipping charges to HP and HP shall payshipping charges to return the product to Buwer. However, Buyer shall pay all shipping charges,
duties, and taxes for products returned to HP from another country.

HP warrants that its software and firmware designated by HP for use with a product wilt execute its programming instructions whea prop-
erlyinstzlled on that product. HP does not warrant that the operation of the product, or software, or firmware will be uninterrupted or er-
ror free.

LIMITATION OF WARRANTY

The foregoing warranty shall not appiyto defects resulting from improper or inadequate maiaterance by Buyer, Buyer-supplied products
or interfacing, unauthorized maodification or misuse, operation outside of the environmental specifications for the product, or improper
site preparalion of maintenance.

The design and implementation of any circuit on this product is the sole responsibility of the Buyer. HP does not warrant the Buyer's cir-
cuitry or maifunctions of HP products that resujt from the Buyer's circuitry. In addition, HP does not warrant any damage that cccurs asa
result of the Buyer's circuit or any defects that result from Buyer-supplied products,

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. HP SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

EXCLUSIVE REMEDIES

THE REMEDIES PROVIDED HEREIN ARE BUYER’S SOLE AND EXCLUSIVE REMEDIES. HP SHALL NOT BE LIABLE
FOR ANY DIRECT, INDIRECT. SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON CON-
TRACT, TORT,OR ANY OTHER LEGAL THEORY.

NOTICE

The information contained in this document is subject to change witheut notice, HEWLETT-PACKARD (HP) MAKES NO WAR-
RANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, HP skall not be liable for errors contained
herein or for incidental or consequential damages in connection with the furnishing, performance or use of this material. This document
contains proprietary information which is protected by copyright. All rights are reserved. No part of this document may be photocopied,
reproduced, or translated 1o another language without the prior written consent of Hewlett-Packard Company. HP assumes no responsi-
bility for the use or reliability of its software on equipment that is not furnished by HP,

Restricted Rights Legend

Use, duplication, or disclosure bythe Government is subject to restrictions as set forth in subdivision (DY{3)(ii} of the Rights in Technical
Data and Computer Software clause at 52.227-7013. Hewlett-Packard Company: 3000 Hanover Street: Palo Alto, California 94304

Declaration of Conformity
Accordingto ISO/IEC Guide 22 and EN 45014

The Hewlatt-Packard Company declares that the HP E1330 conforms to the foliowing Product Specifications.

Safety: 1EC 1010
CSA 231
UL 1244

EMC: CISPR 11,EN 55011, Class A
IEC 801-2, EN 50082-1, 4kVCD, 8kVAD
IEC 801-3, EN 50082-1,3 V/IM

IEC 801-4, EN 50082-1, 1kV

Q.A. Manager
April 1992

Hewlett-Packard Company

P.O. Box 301

§15 4th Street S.W.

L.oveland. Colorado 80539 U.S.A

Printing History
The Printing History shown below lists ali Editions and Updates of this manual and the printing date(s). The first printing of the manual
is Edition 1. The Editicn number increments by 1 whenever the manual is revised. Updates, which are issued between Editions, contain re-
placement pages to correct the current Edition of the manual. Updates are numbered sequentially starting with Update 1. When a new
Edition is created, it contains alt the Update information for the previous Edition. Each new Edition or Update also includes a revised
copy of this printing historypage. Many product updates or revisions do not require manual changes and, conversely, manual corrections
may be done without accompanying product changes. Therefore, do not expect a one-to-one correspondence between product updates
and manual updates.

Edition 1 {Part NumberE1330-00001)o it e iir i rreainraennas
Edition 2 (Part Number E1330-90002) ..., ..., Sept 1990
Edition 3 (Part Number E1330:90003) ... o0virririni e iiiinnerennaans Apr 1992

Safety Symbols

Instruction manual symbol affixed to ™~ Alternating current (AC),
product. Indicates that the user must re-
fer 1o the manual for specific Warning or v

Caution information to avoid personal in- w7 Direat current (DC).

jury or damage to the produci.
i Indicates hazardous voltages.
Indicates the field wiring terminal that
must be connected to earth ground before WARNING Callsattention to a procedure, practice, or
== operating the egquipment—protects condition that could cause bodilyinjuryor

against electrical shock in case of fault. death.

Frame or chassis ground ferminal—typi- CAUTION Calis attention to a procedure, practice, or
& on _L cally connects to the eguipment’s metal condition that could possibly cause dam-

frame. age to equipment or permanent loss of

data,

WARNINGS

The following general safety precautions must be observed during all phases of operation, service, 2nd repair of this product. Failure
to comply with these precautions or with specific wamings elsewhere in this manusl violates safety standards of design, manufacture,
and intended use of the product. Hewlett-Packard Company assumes no Hability for the customer’s failare to comply with these re-
quirements.

Ground the equipment; For Safety Class I equipment {equipment having a protective earth terminal), an uninterruptible safety carth
ground must be provided from the mains power source to the product input wiring terminals or supplied power cable.

DO NOT operate the product in an explosive stmosphere or in the presence of flammable gases or fumes.

For continued protection against fire, replace the line fuse(s) only with fuse{s) of the same voltage and current rating and type.
DO NOT use repaired fuses or short-circuited fuseholders.

Keep away from live circuits: Operating personnel must not remove equipment covers or shields. Procedures involving the removal of
covers or shields are for use by service-trained personnel only. Under certain conditions, dangerous voitages may exist even with the equip-
ment switched off, To avoid dangerous electrical shock, DO NOT perform procedures involving cover or shield removal unless you are
gualified to do so.

DO NOT operate damsged equipment: Whenever it is possible that the safety protection features built into this product have been im-
paired, either through physical damage, excessive moisture, of any other reason, REMOVE POWER and do not use the product untij safe
operation can be verified by service-trained personnel. If necessary, return the product to a Hewiett-Packard Sales and Ser vice Office for
service and repair to ensure that safetyfeatures are maintained.

DO NOT service or adjust alone: Do not attempt internal service or adjustment upless another person, capable of rendezing first atd and
resuscitation, is present.

DO NOT substitute parts or modify equipment: Because of the danger of introducing additional hazards, do not install substitute parts or
perform any unauthorized modification to the product. Returs the product to a Hewlett-Packard Sales and Service Office for service and
repair to ensure that safety features are maintained.

fii

How to Use This Manual

Manual Overview

Chapters in the
Manual

This manual shows how to operate, configure, and program the HP E1330A/B
Quad &-bit Digital I/O Module (referred to as the Digital /O Module). The
Digital YO Module is a VMEbus Extensions for Instrumentation (VXIbus) and
VMEDbus B-sized register-based slave. The Digital I/O Module can operate in a
B-size VXIbus or VMEbus mainframe or in a C-size VXIbus mainframe.

Throughout this manual special attention is given to the use of the module with
the Hewlett-Packard 75000 Series B System mainframes, the HP E1300/E 1301,
and the Standard Commands for Programmable Instruments {SCPI). In many
instances, module functions may exist that are not specifically supported by
cither mainframne or by SCPI; where appropriate, these are addressed by
register-based programming in Appendix B.

This manual is divided into the following chapters:

Chapter 1 - Getting Started with the Quad 8-bit Digital /O Moduie

¢ Description
» Standard Commands for Programmable Instruments (SCPI)
Programming

Chapter 2 - Configuring the Quad 8-bit Digital YO Module

Setting the Address Switch

Setting the Interrupt Switch

Setting the Jumpers

Peripheral Interface Pin-out

Configuring the Digital I/0 Module for Isolated /O

* & & O &

Chapter 3 - Using the Quad 8-bit Digital 1O Module

Inputting and Outputting Bytes

Inputting and Outputting Bits

Setting Polarity

Setting Up Handshaking

Outputting 16-bit words to a GPIO Interface

e o @ 3 ®

Chapter 4 - Understanding the Quad 8-bit Digital /0O Module

* The Handshaking Lines
s Typical Driver/Receiver Circuits
» Word Output Transfers

Chapter 5§ - Command Reference

¢ Syntax Usage Summary

o Command Reference

s IEEE-488.2 Command Reference
¢« Command Quick Refernce

iv

Suggested

Sequence to Use

This Manual

Appendix A - Quad 8-bit Digital /O Specifications
Appendix B - Quad 8-bit Digital /O Module Register Description

Appendix C- Error Messages

This manual has five chapters and three appendixes. Chapters 1 and 2 provide
description and configuration for the Digital I/O module, while Chapter 3 shows
specific tasks as examples of how to use and program the module with SCPL
Chapters 4 and 5 are primarily reference material

For basic operation using SCPI programming, see Chapters 1, 2, and 3. For
basic operation using register-based programming, sece Appendix B. If you need
additional operating information, see Chapter 4. Chapter 5 is the SCPI
command reference for the Digital /O Module

RECOMMENDED SEGQUENCE TG USE MANUAL

First time Register-based
Ugersg Frograrmmers
Chapter | Chapter 1
GETTING STARTED GETTING STARTED
Chapter Z; Chapter 3
CONF TGURING CONF TGUR ING
J
Chapter 3 Chapter 4
USING UNDERSTANDING
+ Appendix B
Chapter 4 Chapter 5 %EG]STER
UNDERSTAND NG COMMAND DESCRIFT ION
REFERENCE
/ £1330 MAP
e @ ¥ @ @riC e

Contents

1. Getting Started

Howto Use ThisManual v
Suggested Sequence to Use ThisManual v
InstrumentDefinition L L L I-1
Technical Description L 1-1
Programming the Digital VO Module -4

2. Configuring the Quad 8-bit Digita] IO Module

Setting the Address Switch L 2-2
Enablmg Pull-ups 2-2
Selecting the InterruptLine 2-3
Combiningthe FlagLines. 2-4
Digital I/O Module Peripheral Pin-out 2-4
Configuring the Digital 1/0 Module for Isolated Digital VO 2-7
Connecting the Digital I/O Module to a GPIO Peripheral 2-8

3. Using the Quad 8-bit Digital YO Module

A Digital Operation Algorithm 3l
Inputting and Outputting Bytes, Words, and Long Words 3-2
Inputting and Outputting Bits L. 3-3
Setting the Polarity 33
Using the HandshakingModes 3.4
Programming Examples for Digital WO Module 3-8

4. Understanding the Quad 8-bit Digital I/0 Module

ASystem Overview L L L 4]
DirectionofDataFlow 4-2
VX1Ibus Connector and Interface Circuit 4-3
PortControllers 4.3
PortInterface Circuits e 4-3
Peripheral Interface Connectors 4-4
Dataand Handshake Lines, 44
Typical Driver/Receiver Circuits 4--8

Contents 1

5. Quad 8-bit Digital VO Module Command Reference

Command TYPES e e 5~-1
SCPI Command Reference it ittt e e 5-4
DISPlay Subsystem L. e e e e e 5-4
DISPlay:MONi#tor [:STATe] 54
DISPlayMONitor (PORTno 5-5
DISPlay:MONitor :PORT? 5-5
MEASure Subsystem 5-6
MEASure:DIGital DATAn[:typel[VALue]?. 3-6
MEASure:DIGital :DATAn[type:BITm? 57
MEASure:DIGital :.DATAn[:type}l TRACe < name> 5-8
MEASure:DIGHal FLAGn? 5-9
MEMorySubsystem 5-10
MEMoryDELete MACRo< name> 5-10
MEMoryVME :ADDRess < base> < address> S5-11
MEMory VME :ADDRess? [« MINIT MAX> 1. 5-12
MEMory VMESIZE < size> 5-12
MEMoryVMESSIZE? [« MINIT MAX>1 5-13
MEMory,VME:STATe < state> 5-13
MEMory,VME:STATe? e 5-13
[SOURce:] Subsystem e 5-14
DIGutal TRACe :CATalog? 5-15
DIGital TRACe [DATA] < name> < block data> 5-15
DIGHal'TRACe [DATA]? < name> 5-16
DIGital.: TRACe :DEFine < name> , <size>, [<fill>] 516
DIGital TRACe :DEFine? <name> 5-17
DIGital TRACe :DELete <mame> 5-17
DIGitat TRACe :DELete: ALL 5-17
DIGitakCONTroin :POLarity?< polarity> 5-17
DIGital:CONTroln POLartity? i 5-18
DIGutabCONTroln [VALuel< value> 5-18
DIGual:DATAn [typel:BITm< value> 5-19
DIGital:DATAn [typel. TRACe< name> o it 5-20
DIGitalDATAn [:type}POLarity < polarity> 5-21
DIGital:DATAn DtypelPOLarity? 5-21
DIGital:DATAn Ceypel< VALue> 0 5-22
DIGtalFLAGn :POLarity < polarity> 5-23
DIGital:FLAGn :POLarity? 5-23
DIGital:DATAn[:type] :HANDshake:DELay < time> 5-24
DIGital: DATAn[:type] :HANDshake:DELay? 525
DIGi#alHANDshaken :-DELay< time> 5-25
DIGitalHANDshaken :-DELay? 526
DIGi#tal:DATAn[type] :HANDshake[[MODE]< mode> 5-26
DIGitalHANDshaken<mode> L. 5-27
DIGalHANDshaken 5-27
SYSTem Subsystem 5-28
SYSTem:ERRor? e 5-28
SYSTemu:VERSIon? e 5-28
IEEE 4882 Common Commands 5-29
Command Quick Reference e 5-30

2 Contents

B. Quad 8-bit Digital /O Module Register Description

Addressing the Registers L L B~-1
Resetand Registers B-2
Register Definition B-5
Register Description B-5
A Register-Based Output Algorithm, B-14
A Register-Based Input Algorithm B-~15
Programming Examples B-16

C. Quad 8-bit Digital YO Module Error Messages

Contents 3

Getting Started

Using this
Chapter

This chapter describes the Quad 8-bit Digital /O Module and how to program
the Module using SCPI (Standard Commands for Programming Instruments)
commands. This chapter contains the following sections:

o Instrumentdefinition. Page 1-1
e Technical Description Page 1-1
¢ Programming i Page 1-4

instrument
Definition

HP plug-in modules installed in an HP mainframe are treated as independent
instruments each having a unigue secondary HP-IB address. Each instrument is
also assigned a dedicated error queue, input and output buffers, status registers
and, if applicable, dedicated mainframe memory space for readings or data. An
instrument may be composed of a single plug-in module (such as a counter) or
multiple plug-in modules (for a Switchbox or Scanning Volumeter Instrument).

Technical
Description

The Quad 8-bit Digital I/O Module (referred to as the Digital /O) is a four port
digital Input/Output module intended for data communication and digital
control in electronic environments compatible with TTL levels {0-5V). Each
port is identical and consists of 6 control lines and 8 data lines. Resident on
each port are 6 registers for control and status. In addition, the module also has
a module interrupt and identification register. The Digital I/O module comphes
with VMEbus Extensions for Instrumentation {VXIbus) definitions for the P1
bus connector on B-sized modules. Jumpers on the module connect the flag
lines for multiport data transmission, select either open collector or TTL
compatible levels on the data lines, and set the VXI interrupt priority level.

Firmware provided in the mainframe for the Digital [/O allows operations in
&-bit “BYTE" format, 16-bit “WORD” format (using 2 ports) or 32-bit
“LWORJ" format (using all 4 ports). When using “WORD” commands, 8 bit
ports 0 and 1 are treated as a single port, with port 0 being the high order byte .
When using “L WORd” commands all 4 8bit ports are used, with 8-bit port 0
being the highest order byte. Table I-1 shows the mapping of bit numbers from
the 8-bit ports to the 16-bit and 32-bit ports.

Two 3-meter, 60 wire ribbon cables with an insulation displacement header
connector (ribbon cable connector) on one end are included with the Digital
10 module.

Getting Started 1-1

Data and Handshake
Lines

The Data lines
(Input and Output)

1-2 Getting Started

Each Digital I/O port can be configured for input or output, positive or negative
true logic, six different handshaking modes, and byte, word, long word, or bit
data transmission. Register-based programming can access control and status
registers for custom handshaking and interrupt functions.

J1 PORT FORT @
- NTERFACE M Rl :
C1ROUTT CONTROLLER :
&
¢ :
s - P1
= PORT 1 FORT x
. O - NIERFACE T conTROLLER = m:
[! i
~ o CIRCUTT ; -
L : -t - g -—Pg
N . o >
= o
i gz PORT 2 PORT 2 4 o
P INTERFACE ™ conTROLLER @
o CIRCUIT -
by >
—_ >
_yy g
= T i
7 PORT 3 PORT 3 5
o 1 INTERFACE CONTROLLER » i
CIRCUIT i

1338 7.1 1
Figure 1-1. Digital I/O Moduie Block Diagram

Each port has eight data lines and six handshake (or peripheral control) lines.
The data and handshake lines for ports O and 1 are brought out through
connector J1. The corresponding lines for ports 2 and 3 are through connector
J2. With either SCPI commands or through register-based programming, you
can control the state of these lines. Control of 8-bit byie transfers of data (data,
flag, and contro! line polarity) and handshaking are available through SCPL
Some control, like peripheral interrupt control or peripheral reset, is not
available through SCPI but may be allowed with register-hased programming.
Let’s look at what these lines do.

Each 8-bit port has eight data lines for paraliel data transmission. Table 1-1
shows the data lines for the 8-bit ports and their mapping into 16-bit and 32-bit
ports.

The FLG Line
{Input)

The CTL Lines
{Output)

The I/O Lines
(Output)

Other control lines

Table 1-1. Data Lines

8-bit (BYTE) operations

Port # 0 1 2 3

Bit designations R 07 7--nnn- O | 7------ O 7rmeonn 0
16-bit (WORD) operations

Port # G 2

Bit designations 15 wcn- 8 T-vvm-- 0 | 15------ 8 Teeeun- 0
32-bit (LWORd) operations

Port # 0

Bit designations 3 I 2423 cmnna- 161 15------ g 7--n--- 0

The most significant bit for BYTE is bit 7, for WORD is bit 15, and for LWORJ
is bit 31. The data lines of each port are bi-directional. You can enable a port for
cither output or input by setting its I/O line FALSE or TRUE,

Each port has a flag (FLG) line. These lines are FLG(0-3) for ports (0-3. A flag
Hne is an input line from a peripheral and has two states: READY and BUSY.
A flag line is normally used in conjunction with the corresponding control
(CTL) line to establish a handshake between a peripheral and the Digital I/O
Module. The exact use of the flag line depends on the type of handshake in use.
Refer to Chapter 3, Using the Quad 8-bit Digital I/O Module, for the
handshaking modes used with SCPL

Each port has a control line {CTL), CTL(0-3). A control line is an output line
from the Digital I/O Module to the peripheral and has two states: FALSE and
TRUE. A control line is normally used in conjunction with the corresponding
flag line on the same port to establish a handshake between a peripheral and the
Digital I/O Module. The exact use of the control line depends on the type of
handshake in use. Refer to Chapter 3, Using the Quad 8-bit Digital [/O
Module, for handshake description.

Each port has an IO line, I/O(0-3). An I/O line is an output to the peripheral
and has two states: FALSE and TRUE.

s When the I/O line is FALSE, the data transceiver of that portis
enabled for output. The peripheral should respond to the signal by
enabling itself to receive data.

e When the /O line is TRUE, the data transceiver of that portis
enabled for input. The peripheral should respond to the signal by
enabling itself (o send data.

Each port has several other control lines which are not supported by SCPI
commands and are accessible only at the register level. Please see Appendix B
for more details on register level programming of the Digital I/O Module.

Getting Started 1-3

S A AL

Programming the
Digital I/0 Module

Note

Sending SCPI
Commands

Note

1-4 Getting Started

To program the Digital I/O Module using SCPI, you must select the controller
language, interface address, and SCPI commands. Guidelines for SCPI
command selection for the Digital /O Module are covered in this manual, See
the HP 75000 Series B Installation and Getting Started Guide for detailed
interface addressing and controller language information.

The SCPI commands are sent to the instrument over the Hewlett-Packard
Interface Bus (HP-IB), HP-1B is Hewlett-Packard's implementation of IEEE
Std 488.2-1987,"Standard Digital Interface for Programmabie Instrumentation.”

This discussion applies only to SCPI {Standard Commands Jor Programmable
Instruments) programming. See Appendix B, Quad 8-bit Digital /O Register
Description, for details on register addressing.

To send SCPI commands, specify:

» the instrument’s HP-1B interface select code
¢ the instrument’s primary HP-1B address

¢ the instrument’s secondary HP-IB address

¢ the SCPI command string

The interface select code is 7. The primary address is the same as the
mainframe address and can be changed in the mainframe. For the HP
E1300/E 1301 Mainframe, the factory setting is 09. A secondary address is
assigned to the Digital I/O when used with an E130(/E 1301 Mainframe or an
E1405A/B or E1406A Command Module. The secondary address is normally
the value obtained by dividing the logical address of the Digital I/O by 8. The
logical address is set on the Digital I/O module.

The Digital I/O Module is set to a logical address of 144 at the factory. This
resufts in a secondary address of 18 (144/8).

Figure 2-2 shows how to set the logical address.

Logical addresses that are not multiples of 8 are nomally not recognized as
instruments by the HP E1300/1301, HP E 1405 and E 1406 cannot be addressed
directly by SCPI commands.

The actual address which must be sent combines the three elements above. The
address for this module is set to 70918 (interface select code 7, primary address
9, and secondary address 18) at the factory.

Specifying SCPI In this section you will see the SCPI commands used on a simple example which
Commands sends and receives a byte of data with the Digital 1/O Module. The commands
apply to four identical /O ports, numbered from 0 through 3. To identify the
port, SCPI asks you to append the port number to all commands. For example,
to send data to a peripheral connected to port n, you send the SCPI command
string:

[SOURce:]DiGital: DATAn [:BYTE][:VALue] < parameter>

This command string writes the data represented by the parameter to the data
lines on port n. The parameter can be a binary, octal, decimal, or hexadecimal
number.

Note All lower case letters In these examples are optional and commands enclosed in
square brackets “f]” are implied. Do not type brackets as shown when you use the
command string in your program. They dre not valid syniaxin the command. You
may choose 10 use only the upper case letters or all of the letters in a command
string A command string written with incomplete commands not represented by
Just upper case letters results in a syniax eror.

The example above could be written as:
DIG:DATANn < parameter>

Similarly, reading data requires that you send the following string:
MEASure:DIGital: DATAN?

or, in shortened form:
MEAS:DIG:DATAR?

The data received is read in dectmal format.

Example To write binary equivalent of decimal 135 to port 0, you use
DIG:DATAD 135

Example To read the byte on port (in decimal format, you use
MEAS:DIG:DATAQ?

For example, a program to output the 8-bit binary equivalent of decimal 25 to
port 3 using HP BASIC with an HP-IB interface at select code 7, primary
address of 09 and secondary address of 18 is;

Getting Started 1-5

Note

1-6 Gefting Started

10 ASSIGN @Dioc TO 70918
20 QUTPUT @Dio; “DIG:DATA3 25"
30 END

Line 10 assigns an /O path @Dio to the device at 70918, Line 20 writes the
SCPI command string to @ Dio and places the binary equivalent of decimal 25
on the port 3 data lines. Line 30 ends the BASIC program.

To input a byte of data from the peripheral at the same address:

10 ASSIGN @Dio TO 70818

20 OUTPUT @Dio: “MEAS:DIG:DATA3?"
30 ENTER @0Dio; Data

40 END

Line 10 assigns an /O path @ Dio to the device at 70918. Line 20 writes the
SCPI command string to @ Dio and read the decimal equivalent of the 8-bit byte
on the port 3 data lines. Line 30 enters the data into the computer from device
@Dio. Line 40 ends the BASIC program.

These examples may not work with your peripheral. The Digital I/0 Module’s
handshaking protocol, timing, and polarity have to match the peripheral’s before
communication can be successful. Additional SCPI commands are covered in
Chapter 3, Using the (Quad 8-bit Digital I/0 Module, and Chapter 5, Quad 8-bit
Digital I/O Command Reference.

Configuring

the Quad 8-bit Digital /0 Module

Using this
Chapter

In this chapter you will learn how to

¢ Set the address switch at the rear of the module........... page 2-2
» Enable the built-in pull-up network for the data lines. page 2-2
¢ Select the interrupt line (1-7) on the VXI backplane

to carry the imterruptsignal. oL page 2-3
Combine the flag lines together so that you can handshake
more than & bits at a time with one handshake sequence ... page 2-4

¢ Connect the Digital I/0 with other devices using peripheral
connectors Jland J2..ol page 2-4
» Connect the Digital I/O Module 1o industry standard
isolated digital /O ... o o oo page 2-7
e Use the Digital /O Module with the GPIO Interface. page 2-8
INTERRUPT
ADDRESS PRIORITY
SWITCH JUMPERS
J 1

v
-
-
e —
T o
—

)
« TL__\ W8] DISABLE]
V5

l[j} E&s ENABLEI ' @

pam |0

e
__‘\LE” L ﬂ
\ mawam

:
m

LQJ i) / &L w;\?J H -
dﬂ‘ﬂ 11 T XU%
T
i ﬁ“ \ N
\‘j‘ £1330 F. 2.1
FLG COMBIN
PULLUP T LR
ENABLE AIMPFRS

Figure 2-1. Jumper, Switch, and Connector Locations

Configuring the Quad 8-bit Digital /O Moduie 2-1

Setting the Address
Switch

Note

Refer to Figure 2-1. In the center rear of the module, next to the P1 connector
you will find the address select switch. Its factory setting is 144; rockers 4 and 7
are closed, all others are open. You can select the address of the Digital VO
Module to any number (-255 (decimal). For example, to set the address 16,
open the switch rockers 0, 1, 2, 3, 5, 6, 7 and close 4 as shown in Figure 2-2,

To be recognized as an instrument when you are using the Drigital I/O Modaule in
an HP E130¢/1301 Mainframe or with an HP E 1405 or E 1406 Command
Module, the logical address must be set 1o a multiple of &,

LOCATE AND SET THE LOGICAL ADDRESS SWITCH

LOGICAL ADDRESS = Sum of decimal
. - values of the switches set to
B1ise vz 1" {legival address 16 shawen}

Figure 2-2. Address Switch Set at 16

s
Enabling Pull-ups

Referring to Figure 2-1, note the pull-up enable jumpers near the middie of each
of the large ICs. Each port can be configured separately for open collector
configuration or a pull up to TTL high levels. The jumpers can be configured for
one of two modes: enabled or disabled; the factory-shipped condition is pull-up
disabled. The enabled mode is convenient for detecting dry switch closure.

2-2 Configuring the Quad 8-bit Digital I/O Module

S O

Selecting the
Interrupt Line

Note

The VX1 peripheral interrupt bus consists of seven lines which can carry the
interrupt signal to the controlier. Module interrupt priority can be established
with these lines; in general, the higher the line number, the higher the priority.
Referring to Figures 2-1 and 2-3, near the P1 connector you will find two sets of
jumper pins labeled x and 1-7 (JM15 and JM16). The Digital YO Module is
factory-shipped with the interrupt set to 1. If you need 1o change the interrupt
level you must move the jumpers on both jumper blocks. Spare jumpers used
for connecting the flag (FLG) lines are stored on the unused ground pins of this
connector when it ships from the factory.

In this example, the priority

fevel is set to 1. The mighest
prierity is 7

Spare jumpers for

fig conrections
can be stored on
comnon pins

i3 7 o2 2
Figure 2-3. Priority Interrupt Connector
(Factory Settings)

The interrupt circuitry for the E13308 is implemented as release on interrupt
acknowledge (ROAK). The Digital I/O module will de-assert (or release) the
intermupt request line during an interrupt acknowledge cycle.

The interrupt circuitry on the E1330A was im plemented as release on register
access (RORA). The E1330A digital I/O module would continue to assert the
interrupt requiest line until the Port Control/staius register on the digital 1/0 module
is accessed,

Both the E1330A and E1330B may be used with the E 1300A/E1301A and with the
EI405A/B and EI406A. Only the E1330B can be used with the E 1570A, however.

Configuring the Quad 8-bit Digital /O Module 2-3

e A

Combining the Flag Each port has its own flag line. For the transmission of 8-bit bytes, the flag line

Lines from cach of the individual ports can be used independently to handshake with a
peripheral. On the other hand, the flag lines can also be combined for up to 32
bits in a word. The jumpers used to implement this configuration are shown in
Figure 2-1. Extra jumpers for combining flag lines are stored on the unused pins
of the interrupt priority connector.

For 16-bit data width you can combine the flag lines on ports 0-1, or 1-2, or 2-3
with one jumper. The jumpered flag lines are physically tied together.
Accessing either of the flag lines accesses them both.

For 32-bit data width you can combine ports 0-1, 1-2, and 2-3 with 3 jumpers.
Accessing any one of the four flag lines accesses all four in this configuration,

DM

Digital I/0 Module Figure 2-4 shows pinouts for the Digital I/O Module,which is compatible with
H - easy crimp connections to ribbon cables for standard digital /O interfacing.
Pertpheral Pin-out Figure 2-5 shows the data line location on the supplied ribbon cables. Figure 2-7
shows how to connect the cables. Details about the functioning of these pins is
covered in Chapter 4 - Understanding the Quad 8-bit Digital /0 Module, but
line names are as follows for ports 0 through 3:

RES the reset line - used to reset a peripheral.
STS the status line - used as an ancillary handshake line.
PIR the peripheral interrupt line - used to signal a peripheral interrupt.

FLG the flag line - used to handshake data between a peripheral and the
Digital /O Module. Controlled by the peripheral.

CTL. the control line - used to handshake data between a peripheral and
the Digital I/O Module. Controlled by the Digital 1/0 Module.

10 the input/output line - used to establish input or output on a port.

D(0-7) the data lines - transmit information between the peripheral and
Digital I/O Module.

2-4 Configuring the Quad 8-bit Digital /O Module

41 Je

- ASQ 43 % 28 18 3 1 o8 43 3% 23 8] 1
g
16D [23952552558550000580000000828% l283383333232382332228333233332
& &0 o) Els) 3G el PO H fa) 50 a5 C (o] 1T 2 &
IQREF F4 |7
.
Pin | Assignment| Pin | Assignment| Pin Assignment | Pin | Assignment

— 31 D1-2
RES! 33 Di-3
RESO 35 Di-4
STS1 37 Di-5
STSO 39 Dl1-6
PIR1 41 D17
PIRO 43 D00

1 1 —_— 31 D32
3 3 RES3 33 D3.3
5 5 RES2 35 D3-4
7 7 STS3 37 D3-5
9 9 STS2 39 D3-6
11 I1 PiR3 41 D3-7
i3 13 PIR2 43 D20
15 FLG1 45 DO-1 15 FLG3 45 D2-1
17 FLGO 47 Do-2 17 FLG2 47 D2-2
19 CTL1 49 DO-3 19 CTL3 49 D2-3
21 CTLO 51 DO-4 21 CTL2 51 D2-4
23 o1 53 DG-5 23 [/03 53 D2-5
25 /00 55 DO-6 25 1/02 55 D2-6
27 D1-0 57 DO-7 27 D3-0 57 D2-7
29 D1-1 59 e 29 D3-1 59 N —

Figure 2-4. J1 and J2 Connector Pinouts

Configuring the Quad 8-bit Digital ##O Moduie 2-5

CagLEl Y0
CONNECTOR
Ji

TAN WIRE

BROWN WiRE
HREE P4 58

TAN WIRE

NOTE ALL TAN
WIRES ARLT
GROUND

CABLE TO

gz

CONNECTOR

BROWN WiRE

BYTE | WORD | LWORd Wire BYTE | WORD | LWORG Wire
Line Line Line Color m Line Line Color
DOT T WO-15 1 LO-31 White D2-7 | W2-15 | LO-15 White
DO-6 | W0-14 1 LO0-30 Grey D2-6 | W2-14 | L10-14 Grey
DO-5 W0-13 1 LO-29 Purple D2-5 | W2-13 | L0-13 Purple
DO-4 | W0-12 | 1.0-28 Blue D2-4 | W2-12 1 LO0-12 Blue
DO-3 | W0-11 1 1027 Green D2-3 w211 LO-11 Green
DO-2 | WO-10 | LO-26 Yellow | D2-2 | W2-10 | LO-10 Yellow
Do-1 | W09 1.0-25 Orange | D2-1 | W2.9 LO-9 Orange
DO | WO-8 1.0-24 Red D2-0 | W2.8 LO-8 Red
P17 | W07 L0223 Brown D37 | W2-7 LO-T7 Brown
Di6 | W06 1.0-22 Black D36 | W2-6 LO-6 Black
D15 . WO0-3 L1021 White D3.-5 | W2.5 LO-5 White
D1-4 | W04 L020 Grey D34 | W2.4 LO-4 Grey
D13 | W03 § LO-19 Purple | D3-3 | W23 £0-3 Purple
D2 | Wo-2 LO-18 Blue D32 | W22 LO-2 Blue
DI-1 | W01 LO-17 Grey D31 | W21 L0o-1 Grey
D10 W00 L0-16 Yellow | D3-0 | W20 1.0-0 Yellow

Notes:
Read wire colors from left to right
All even wires (tan) are ground

Figure 2-5. Data Line Location on Ribbon Cables

2-6 Configuring the Quad 8-bit Digital /0O Module

Configuring the
Digital /0 Module
for Isolated Digital
/0 |

10REF F4. 318

Figure 2-6, Connecting the Digital IO Cable

The two Digital I/O Module peripheral connectors, J1 and J2, each have sixty
pins. An industry standard isolated digital I/O peripheral, like the Opto 22% 16
Position Single Channel Mounting Rack, is a 50 pin connection. The connector
is either a card edge or a header connector (similar to J1 on the digital 1/0
module). For example, the Opto 22 rack, PB16C, uses a card edge connector;
PB16H uses a header connector. They both have the same pinout for the ribbon
cable. Both can accommodate up to 16 single channel /O lines,

Since the isolation peripheral only uses 50 pins, 10 of the wires on the ribbon
cable supplied are left unconnected on one end of the cable. The method of
connection to the ribbon cable can be facilitated by the use specialty fixtures for
these connectors, but there is no standard for connector keys or spacing. Check
the connector you need before proceeding to interface to the rack.

For the Opto 22% rack, lines 1-10 are not used on the peripheral connector. Pins
27 - 57 on the ribbon cable, odd numbered pins only, correspond to the pins 17 -
47 on the Opto 22% rack. All even numbered pins are ground.

The Module Input/Output at the top of Figure 2-7 is the interface to the isolated
input/output lines.

Opto 22%isa registered trademark of Opto 22, Huntington Beach, CA 92649

Configuring the Quad 8-bit Digital I/O Module 2-7

I 1 3
¥01 LSED

FlﬁBCN CABLE

BIElaL [0
MOOALE

i
’//

i// {“_‘5 &5 &1 K~ AvE KL K+ A% Avl Ev O KY A AL AY Kv| A A+
74 ;E;:sa:;%?%%%% Plilislsiss ;

Procedure

O S

o

© {vm!
s 2ing

oLt

S

MODILE ENPUTZQUTPUT
(10 PSOUATED PERIP-ERAL)

2RI 1253 1418 £ {7 16
X |Méwé@ Sl ol

gy

&
@
bd

&

o

obeed, g,
sa(TYR)

”@c‘)@%},.g;
&

»@@@@94

@099

@é@@é
)

@3}9

@@@Q@vbg

+obea o

Gn
@&
b

Q0 ~3 00 b 10 -4

Figure 2-7. Typical isolated Peripheral Hookup

1. Carefully cut lines 1-10 on the ribbon cable. The blue wire should be
the first wire on the ribbon cable after you make the cut.

2. Select the 50 pin connector you need, either edge connector or header
connector and attach the ribbon cable.

3. Connect the ribbon cable to the Opto 22% rack for optically isolated
digital operation.

Connecting the
Digital I/0 Module
to a GPIO
Peripheral

Procedure:

The GPIO interface is a widely used standard parallel interface for connecting
computers to peripherals. The GPIO interface may employ up to 32-bits of
bidirectional data transfer. The Digital YO Module and the GPIO interface
have identical line definitions but different pin assignments. Ports A-D on the
GPIO are defined as ports 0-3 on the Digital /O Module.

L. Connect the ribbon cable to connector 11 and/or J2 on the Digital /O
Module.

2. Connect the wires on the ribbon cable to the peripheral as described in
Table 2-1 for the GPIO interface.

2-8 Configuring the Quad 8-bit Digital YO Module

Table 2-1. Digital I/O Pinout to GPIO Pinout

Port ¢ Portl
Digital /O | GPI1O Digital YO | GPIO
Connector n J2 J1 J2
Name Pin # Pindt Name Pin# Pin#
DOO 43 33 D10 27 4
Dot 45 15 D11 29 22
poz 47 34 D12 31 3
D63 49 16 D13 33 21
D4 51 35 Dl4 33 2
DOs 53 17 D15 37 20
Do6 55 36 Dle 39 1
DO7 57 18 D17 41 19
RESO 5 12 RESI 3 29
STSO 9 26 STS1 7 8
PIRO 13 9 PIR 1 11 25
FLGO 17 27 FLG1 15 7
CTLS 21 13 CTL1 19 30
/00 25 31 1O1 23 11
Port 2 Port3
Digital I/'O | GPIO Digital /O | GPIO
Connector 2 I J2 i3
Name Pin# Pin# Name Pin#t Pin#
D20 43 33 D30 27 4
P21 45 15 D31 29 22
b22 47 34 32 31 3
D23 49 16 D33 33 21
D24 51 35 D34 35 2
D25 53 17 D35 37 20
D26 55 36 D36 39 1
D27 57 18 D37 41 19
RES2 5 12 RES3 3 29
STS2 9 26 STS3 7 g
PIR2 13 9 PIR3 i1 25
FLG?2 17 27 FLG3 15 7
CTL2 21 13 CTL3 19 30
/02 25 31 /03 23 11

For the Digital I/O connectors,

all even numbered pins are ground.
For the GPIO connector,

pins 5,6,10,14,23,24,28 and 32 are ground.

Configuring the Quad 8-bit Digital I/0 Module 2-9

3

Using the Quad 8-bit Digital I/0 Module

Using this
Chapter

A Digital Operation
Algorithm

This chapter is divided into six sections about transferring data to and from the
Digital /O Module and a peripheral:

¢ A Digital Operation Algorithm
¢ Inputting and Outputting Bytes
* Inputting and Outputting Bits
+ Setting the Polarity
o Using the Handshaking Modes
Programming Examples

The basic algorithm used to read data from or (o write data to a peripheral is to

use the following steps:

- Set opolarity of controb

fiag, ond dato lines on
the port.

R

’ Set the porl handshake

maode for peripheral
commuricotion.

-

5. Set nondshoke liming.

o

. Output Dota to peripheral

or input doto from
peripherot,

Using the Quad 8-bit Digital /0 Module 3-1

Inputting and
Outputting Bytes,
Words, and Long

Words
OUTPUT

Example

INPUT

Example

For data transfers directly to or from a peripheral device, the Digital I/O
transfers data using BIT, BYTE (8-bit}, WORD (16-bit), or LWORA (32-bit)
SCPI commands. For all transfers either binary, octal, decimal, or hexadecimal
formats may be used to output data to a peripheral. All mput data from the
peripheral is read in decimal.

The syntax used to output data follows:

| SOURCce:} DIGital:DATAn| :type]{ :VALue] [basej< numeric data> for
output on port a.

[type]lis [BYTE], :‘WORD, or LWORdJ. The command works on 8-bit bytes if
['type] is not included. When :‘WORD is specified only ports 0 and 2 are
available, with port 0 being the combined 8-bit ports 0 and 1 (8-bit port 0 is the
high order byte of 16-bit port (), and port 2 being the combined 8-bit ports 2 and
3 (8-bit port 2 is the high order byte of 16-bit port 2). When LWORJ is
specified only port () is available, with 8-bit port 0 being the highest order byte of
the 32-bit LWORA port.

[base} sets the numeric string to be binary, octal, decimal, or hexadecimal by
using the following coding.

Binary [base}= #B
Octal [basel= #Q
Decimal [basel= no entry
Hexadecimal [base]= #H

MG:DATA3 # HFF

Outputs hexadecimal FF on port 3.

The syntax used to input data follows:
MEASure:DIGital:DATAnR] :type] ? for input from port &,
This is always read as a decimal number.

Ltypelis [BYTE]L ‘WORD, or LWORJ. The command works on 8-bit bytes if
{:type] is not included. When :WORD is specified only ports 0 and 2 are
available, with port 0 being the combined 8-bit ports 0 and 1 (8-bit port Ois the
high order byte of 16-bit port (), and port 2 being the combined 8-bit ports 2 and
3 (8-bit port 2 is the high order byte of 16-bit port 2). When LWORd is
specified only port 0 is available, with 8-bit port O being the highest order byte of
the 32-bit LWORA port.

MEAS:DIG:DATA2?

Inputs 8-bit data from the peripheral connected to port 2 in decimal formal.

3-2 Using the Quad 8-bit Digital YO Module

Inputting and
Outputting Bits

OUTPUT

Examples

INPUT

Example

Setting the Polarity

The Digital /O module can also input and output single bits to and from ports
as required. This is done using the :BITm keyword.

The syntax for bit transfers is:

[SOURee:]| DIGital:DATAn| :type]:BITm < [or 0> for outputofa “1"or a "0"
at bit m of port n.

Ltypel is [(BYTE]L :WORD, or L WORd. The command works on 8-bit bytes if
[:type] is not included. When :WORD is specified only ports 0 and 2 are
available, with port O being the combined 8-bit ports J and 1 (8-bit port Ois the
high order byte of 16-bit port 0), and port 2 being the combined 8-bit ports 2 and
3 (8-bit port 2 is the high order byte of 16-bit port 2). When LWORd 1s
specified only port 0 is available, with 8-bit port 0 being the high order byte of
the 32-bit LWORJ port,

DIG:DATA2:BIT3 0

Sets bit 3 of port 2 to logical 0.

The syntax for inputting individual bits is:
MEASure:DIGital:DATAn| :type} :BI'Tm? for input from bit m of port n.

[type] is [BYTE], :WORD, or ‘LWORd. The command works on 8-bit bytes if
[:type] is not included. When :WORD is specified only ports 0 and 2 are
available, with port 0 being the combined 8-bit ports O and 1 (8-bit port {is the
high order byte of 16-bit port (), and port 2 being the combined 8-bit ports 2 and
3 (8-bit port 2 is the high order byte of 16-bit port 2). When LWORA is
specified only port 0 is available, with 8-bit port O being the high order byte of
the 32-bit LWORJ port.

MEAS:DIG:DATAL:BITT?

Reads bit 7of port 1.

The true level, either TTL high (> 2.5V) or TTL Low (< 1.4V), can be set on
the control (CTL) ling, the flag (F1.G) line, and the data lines of each port with
the POLarity keyword. The SCPI commands are:

Using the Quad 8-bit Digital I/O Module 3-3

[SOURce:] DIGital: CONTroln:POLarity < POSitive or NEGative> 1o set the
control line’s polarity on port .

{ SOURce:] DIGital:FLAGn:POLarity < POSitive or NEGative> (o set the flag
line’s polarity on port ..

{ SOURce:] DIGHal:DATA#:POLarity < POSitive or NEGative> to set the data
line polarity on portn.

Example DIG:DATAL:POL POS
Sets the polarity to positive on port 1 data lines.

The *RST (reset) condition is positive polarity for control (CTL), flag (FLG),
and data lines.

Using the Handshaking modes used by the Digital I/O Module are designed to allow data
H transfer in and out of the module so that both the peripheral and the Moduie

Handshakmg are readyto send or accept data, SCPI supports the following modes of

Modes handshaking which are illustrated in the timing diagrams of Figure 3-1.

¢ ILeading Edge

s Trailing Edge

Pulse

Partial
* Strobe

The handshaking commands control the behavior of the control (CTL) line and
the flag (FLG) lines {the interactive timing and sequence of control and flag
signals). CTL is controlled by the Digital /O Module; FLG is controlled by the
peripheral. The data flow is controlled by the peripheral during an input cycle
or by the Digital 1/0 Module during an output ¢cycle. To interpret the timing
diagrams in Figure 3-1, let’s look at the Leading Edge Handshake (upper left
hand corner of Figure 3-1).

The Digital I/O Module monitors the flag (FLG) line for a READY condition.
Once this line is ready. the Digital I/O Module places data on the output port.
After a delay time, Td, the Digital I/O Module sets the control (CTL) line
TRUE. The peripheral senses the CTL condition and sets the FL.GG to BUSY
and reads the data. The Digital I/O Module senses the FL.G BUSY state and
returns CTL to FALSE. After a minimum of 250 ns, the peripheral sets the FLG
to READY, signaling the end of the data transfer. When FLG returns to the
READY, the Digital /O Medule is ready for another cycle.

3-4 Using the Quad 8-bit Digital YO Modute

QUTPUT

LEADING
[S2 AN ?"”Td i
FLG

A7 (D VAT

TRAILING

iy
CTL

FLG §

BATA AARAWAK vaeiD QNI

PULSE

LG

Data TITTTTONY R ID AN

PART] AL

—re
CIL
S VAVARVANRAENNNURNARY AN I AARARARARAARS

DATA ARAEX, RSN AN

STROBE

e e
Cri

DaTA MY TR G

REN

TRUE
FalLSE
BUSY
READY

TRUE
FALSE
BUSY
READY

TRUE
FALSE

BUSY
READY

TRUE
AL SE
BUSY
READY

TRUE
FALSE

INFUT
LEADING
P——=
e S e FaLsr
— pusY
FLD) I READY
ATA TRV vars CRTIY
TRAIL ING
ot L e
I e T
Lo e READY
cara ATTRTTTRTRRATINY vacio
PULSE
— iRUC
A _ FALSE
T T
Lo —— READY
EATA VAR ARV val1o
PARTIAL
e TRUE
CTL. '_"—'-J‘_‘__—%— e EALSE
SPATIARAUAUARINRY A Y ARUUANRRRERRARTUC NS iﬁ;Y
Bara AWV valto SRR
STROBE
e e TR
&1L Ta e FALSE
CATA ARTTAVANATRANRM vaLID
£1330 7. 3. 1

Figure 3-1. Handshake Mode Timing Diagrams

Using the Quad 8-bit Digital YO Module 3-5

Handshaking The SCPI HANDshake keyword has six modes of operation: five corresponding
Commands to the timing diagrams in Figure 3-1 plus the no handshake mode, NONE. You
can set the handshake for 2 ports by using WORD commands, and for all 4 ports
by using L WORd commands.

The DIG:HAND# version of this command operates only on 8-bit ports. The
DEIG:DATA#| stype] :HAND version of this command operates on &-bit
{[:typel= :BYTE), 16-bit ({:type]= :WORD), and 32-bit ([:type}= LWORdJ)
ports. The following syatax examples use all of the handshaking modes and
various data output and input formats. All of the following examples use HP
BASIC to communicate with the Digital I/O.

Handshaking Mode DIG:HAND#n NONE sets the port # handshake mode to none. NONE is the
NONE reset state for all ports.

10 QUTPUT @Dio;"DIG:HANDT NONE'
20 OUTPUT @Dio;"DIG:DATA1 # B0O0001010"

Line 10 sets the handshake mode to none on port 1 for device @ Bio. Line 20
outputs the binary byte 00001010 on port ! for device @ Dio.

10 QUTPUT @Dio;"DIG:DATA2:WORD:HAND NONE"
20 QUTPUT @Dio;"DIG:DATA2:WORD # B1100001100001010"

Line 10 sets the handshake mode to none on 16-bit port 2 for device @ Dio. Line
20 outputs the binary data 1100001100001010 on 16 bit port 2 for device @ Dio.

Handshaking Mode DIG:HAND# LEAD sets the port n handshake mode to leading edge.

LEADiIn
g 10 OUTPUT @Dio;"DIG:DATA3:HAND LEAD"
20 OUTPUT @Dio;"MEAS:DIG:DATA3?
30 ENTER @Dio; Data

Line 10 sets the handshake mode to LEADng on port 3 for device @D1io. Line
20 commands the module at address @Dio to measure the byte of data on port
3. The data from the peripheral is returned to the computer with the ENTER
statement as a decimal number.

10 QUTPUT @Dio;"DIG:DATAO:.LWORHAND LEAD"
20 OUTPUT @ Dio;"MEAS:DIG:DATA0:LWOR?"
30 ENTER @Dio; Data

Line 10 sets the handshake mode to LEADing on the 32-bit port for device
@Dio. Line 20 commmands the module at address @ Dio to measure the 4 bvies
of data on the 32 bit port. The data from the peripheral is returned to the
computer with the ENTER statement as a decimal number.

3-6 Using the Quad 8-bit Digital YO Module

Handshaking Mode DIG:HAND# TRA sets the port n handshake mode to trailing edge.

TRAIl
g 10 OUTPUT @Dio:"DIG:DATAZ:WORD:HAND TRA"
20 OUTPUT @Dio-"DIG:DATAZWORD # HABAB"

Line 10 sets the handshake mode to TR Ailing on 16 bit port 2 for device @Dio.
Line 20 outputs the hexadecimal data ABAB on 16-bit port 2 for device @Dio.

10 OUTPUT @Dio;"DIG:DATAC:LWORHAND TRA"
20 OUTPUT @Dio;"DIG:DATAC:LWOR # HABABABAB"

Line 10 sets the handshake mode to TR Ailing on the 32-bit port for device
@Dio. Line 20 outputs the hexadecimal data ABABABAB on the 32-bit port
for device @Dio.

Handshaking Mode DIG:HAND#a PULS sets the port n handshake mode to pulse.

PULS
€ 10 QUTPUT @Dio:"DIG:HAND3 PULS"
20 OUTPUT @Dio;"MEAS:DIG:DATA3?
30 ENTER @Dio; Data

Line 10 sets the handshake mode to PULSe on 8-bit port 3 for device @Dio.
Line 20 commands the module at address @ Dio to measure the byte of data on
&-bit port 3. The data from the peripheral is returned to the computer with the
ENTER statement as a decimal number.

Handshaking Mode DIG:HAND~R PART sets the port n handshake mode to a partial handshake.

PARTial
I 10 OUTPUT @Dio;"DIG:DATAO:WORD:HAND PART"
20 QUTPUT @Dio;"DIG:DATAC:WORD # Q53"

Line 10 sets the handshake mode to PARTial on 16-bit port 0 for device @Dio.
Line 20 outputs the octal byte 53 on 16-bit port 0 for device @Dio.

Handshaking Mode DIG:HAND=# STR sets the port # handshake mode to a strobe handshake.
STRobe

10 OUTPUT @Dio;"DIG:DATAC:HAND STR"
20 OUTPUT @Dio;"DIG:DATAC 47"

Line 10 sets the handshake mode to STRobe on the 32-bit port for device @ Dio.
Line 20 outputs the decimal byte 47 on the 32-bit for device @Dio.

Note Output data can be either in binary, octal, decimal, or hexadecimal formats.
Input data is read in decimal only. SCP1 queries must be read or cleared or an
error will result.

Using the Quad 8-bit Digital I/O Module 3-7

Programming
Examples for
Digital I/O Module

TASK
TASK

TASK

TASK

TASK

Although there are toc many possible command combinations to list all of them
specifically in this book, the following examples are an attempt to set forth some
tasks you may require and the solutions to these tasks.

All of the following task examples assume that the task starts with the card in the
*RST state. Al of the examples are shown using HP Basic to communicate with
the Digital [/O.

Write 16-bit data 1234 hex to port 2,with handshake mode none.
QUTPUT @Dio;"DIGital: DATAZ.WORD # h1234"

Write 32-bit data 12345678 hex to port O,with handshake mode none.
OUTPUT @Dio;"DIGital:DATA0:LWORd # h12345678"

Write 16-bit data 1234 hex to port 0,with handshake mode LEADING.

10 OQUTPUT @Dio;"DIGital:DATAG:WORD:HAND lead"
20 OUTPUT @Dio;"DIGital:DATAO:WORD # h1234"

Connect the acknowledge signal to the flag of port 0 and port 1. Use the control
signal from either port § or port 1.

Write 16-bit data 1234 hex to port 2,with handshake mode LEADING, data
polarity inverted, and also flag polarity inverted.

10 OUTPUT @Dio;"DIGital:FLAG2:POL NEG"

20 OUTPUT @Dio;"DIGital:FLAG3:POL. NEG"

30 QUTPUT @Dio;"DIGital:DATA2. WORD:POL NEG"
40 QUTPUT @Dio;"DIGital: DATA2. WORD:HAND lead"
50 OUTPUT @Dio;"DiGital:DATA2:WORD #h1234"

Connect the acknowledge signal to the flag of port 2 and port 3. Use the control
signal from either port 2 or port 3.

Write 32-bit data 12345678 hex to port O,with handshake mode TR Ailing, data
polarity inverted,and also control polarity inverted. Then write 9abcdef0 hex
after first the data.

10 OUTPUT @Dio;"DiGital. CONTO:POL NEG"

20 OUTPUT @Dio;"DIGital: CONT1:POL NEG"

30 OUTPUT @Dio;"DiGital: CONT2:POL NEG"

40 OUTPUT @Dio;"DIGita:CONT3:POL. NEG"

50 OUTPUT @Dio;"DIGital:DATA0:LWOR:POL NEG"

60 OUTPUT @Dio;"DIGital.DATAG:LWORd:HAND TRA"

70 OUTPUT @Dio;"DIGital:DATAGLWORD # h12345678"

80 ENTER @DEO;A{*) ! make sure previous command is done
90 OUTPUT @Dio; DIGital:DATACLWORD # h9abcdefQ”

Connect the acknowledge signal to the flag of all ports. Use the control signal
from any port.

3-8 Using the Quad 8-bit Digitat /O Module

TASK

TASK

TASK

TASK

Read 16-bit data from port 2,with handshake mode none.

10 QUTPUT @Dio;"MEAS:DIGital: DATAZ2:WORD?"
20 ENTER @Dio;A{*} ! make sure previous comrmand is done

Read 31st bit (i.e. bit 7} of port 0 (physical port 0) or port 0 of width 32 (logical
port),

10 OUTPUT @Dio;"MEAS:DIGital:DATAD:LWORD:BIT317?"
20 ENTER @Dio;A(*) ! make sure previous command is done

or

10 QUTPUT @Dio;"MEAS.DIGital: DATA3:BIT7?"
20 ENTER @Dio;A(*) | make sure previous command is done

Read two 32-bit data from port O,with handshake mode TR Ailing, data polarity
inverted,and also control polarity inverted.

10 OUTPUT @Dio;"DIGital: CONTO:POL NEG

20 QUTPUT @Dio;"DiGital:CONT1:POL NEG"

30 OUTPUT @Dio;"DiGital. CONT2:POL NEG"

40 QUTPUT @Dio;"DiGital: CONT3:POL. NEG"

50 QUTPUT @Dio;"DIGital:DATAO:LWOR:POL. NEG"

60 OUTPUT @Dio;"'DIGHal:DATAC:LWORd:HAND TRA"

70 OUTPUT @Dio;"MEAS:DiGital:DATAO0:LWORD?"

80 ENTER @Dio;A(*) ! make sure previous command is done
90 OUTPUT @Dio;"MEAS:DiGital: DATA0:LWORD?"

Connect the acknowledge signal to the flag of all pdrts‘ Use the control signal
from any port.

Write an array of 100 bytes to port T and port 0. There is no memory card in the
system.

The trace format { IEEE 488.2) needs binary input. We will use HP BASIC 10
show how it can be done.

10 DATA 123,1,2,3456,789

20 INTEGER ASHO) 110 words = 20 bytes

30 READ A(*) !fill array in controller memory.

40 ASSIGN @Dio TO 709807 ! dig io at sec address 7

50 QUTPUT @Dio;"DIG:TRAC:DEF first_track, 100" ! define a trace
named first_trace of 100 bytes length

60 OUTPUT @Dio;"DIG:TRAC first_trace,"# 220" A(*) ! fill 20 bytes
of first_trace with array A

70 OUTPUT @Dio USING "K,10(W)";"DIG:TRAC

first_trace,# 220"A(") ! fill 20 bytes of first_trace with array A

More program lines

90 OUTPUT @Dio;"DIG:DATA first_trace” ! output first_frace data
at port 0.

Using the Quad 8-bit Digital I/0 Module 3-9

TASK Same task as above but using external memory card.

10 DATA 1231234567839

20 INTEGER AQHO) 10 words = 20 bytes

30 READ A(") !ill array in controller memory.

40 ASSIGN @Dio TO 70907 ! digic at sec address 7

41 QUTPUT @Dio;"MEM:VME:ADDR # H200000" ! tell where
memory card is.

42 QUTPUT @Dio;"MEM:VME:SIZE 100" ! how much memory
can be used by this digital /O

43 OUTPUT @Dio;"MEM:VME:STATE ON" !turn state on so
trace will be placed in ext memog,

50 OUTPUT @Dio;"DIG:TRAC:DEF first_trace, 100" ! define trace
named first_trace of 100 bytes length

60 OUTPUT @Dio USING “K,10(W)".'DIG:TRAC

first_trace # 220" A(") 1fill 20 bytes of first_trace with array A

70 QUTPUT @Dio;"DIG:DATA1 first_trace" ! output firsf trace data
atport 1.

More program lines

560 %UTPUT @Dio;"DIG:DATA first_trace” | output first_trace data at
port 0.

TASK Read 40 words {16 bits) from port 2 &t fastest speed,

10 ASSIGN @Dio TO 70807 | dig io at sec address 7

20 INTEGER A{1:40)

30 QUTPUT @Dio;"DIG:TRAC.DEF read_trace,80" ! define trace
named read_trace of 80 hytes (40 words) length

40 CUTPUT @Dio;"MEAS:DIG:DATA2:WORD: TRAC read_trace" !
fast read data at port 2 into read _trace.

50 QUTPUT @Dio;"DIG:TRAC? read_trace"! put read_trace data
into DIO output buffer

60 ENTER @Dio USING “4A,40(W)y":D$;A(*} ! read data from DIO
output buffer into controller memory (D$ gets # 280, A(*) gets data)

3-10 Using the Quad 8-bit Digital /O Module

Understanding the Quad 8-bit Digital I/O Module

Using this
Chapter

A System Overview

This chapter describes the signal lines used in the Digital [/0 Module. An
algorithm for word output transfers of 16-, 24-, and 32-bit words is also
discussed. This topic is introduced in Chapter 3, Using the Quad 8-bit Digital
1/0 Module, for a 16-bit output to a GPIO peripheral and it is extended here.

The information in this chapter provides the user with additional background
for a thorough understanding of the Digital I/O module. In particular, this
information forms the basis of register programming, discussed further in
Appendix B.

Chapter Contents:

2 A System OVEIVIEWot i page 4-1
e DirectionofDataFlow page 4-2
¢ Bus Connector and Interface Circuit. page 4-3
e PortControllers ... e page 4-3
o Portinterface Circuits., page 4-3
¢ Peripheral Interface Connectors page 44
¢ Dataand Handshake Lines. page 4-4
e Typical Driver/Receiver Circuit................ page 4-8

The Digital 1/0O Module serves as a unique interface to peripherals that may be
connected to it. In most system applications, the real human interface is the
computer that coatrols the VXIbus mainframe. The interface that
communicates between the computer and the mainframe may be RS-232 or
HP-IB or some other interface. The VXIbus is the interface that the mamframe
uses to communicate with the Digital I/O Module to establish setups and
transfer data. And, finally, the interface with the peripheral is through the data
and handshaking (peripheral control) lines. (Refer to Figure 4-1.)

Corresponding to the hardware interfaces are software {firmware) instructions
to control the operation of the hardware. SCP1 is the command language the HP
E1300/130] Mainframe and HP E 1405 and £1406 Command Module
understands. You use these commands on a high Ievel to communicate with the
peripheral connected to the Digital /O Module. Communication protocols and
device drivers are built in to this language to simplify communication. But, some
modes of operation are not supported at this higher level. For example, direct
control of the data transfer modes and peripheral resets can only be
accorplished with direct Digital I/O Module register communication. If you
have a special need, refer to Appendix B, Register Description, for more
information.

Understanding the Quad 8-bit Digital I/0 Module 4-1

Direction of Data
Flow

4 AN
ave FL T i T \ . -
COMPUTER \\\ HEP- 1B MA I NFRAME
: L
N
S
9
VX Thus !
|
PORT DATA L
ard T\
HANDSHAKE N
- INES
— - //L__i__g\i > P\ o
FERIFPHERAL " DIGITAL
DEVICE - //” /0 MODULE
1
Fi330 F .4

Figure 4-1. System Overview

To avoid confusion about the direction of the flow of data:

e Qutput is data from the Digital /O Module to the peripheral.
o Input is data from the peripheral to the Digital 1/O Module.

Figure 4-2 shows a data flow diagram of the Digital I/O Module. The module
consists of four 8-bit [/O ports, each with its own controller, interface circuit,
data lines, and handshake lines.

4-2 Understanding the Quad 8-bit Digital O Module

GITA
DI?}O - QUTPUT PERIPHERAL
MODULE DEVICE
DIGITAL
l1 Ige) I8EUT PERIPHERAL
MODULE \J DEVICE

C133p F o4 2

Figure 4-2. Digital I/0 Module Data Flow

VXlbus Connector
and Interface
Circuit

The VXIbus Connector P1 plugs into your VXTbus mainframe. The VXIbus
interface circuit decodes addresses, generates and responds to handshaking
signals, and provides data buffering.

Port Controliers

Each of the four 8-bit ports (0,1,2, and 3) has its own controller integrated
circuit (IC); hence, each port can operate independently. Each port has six
hardware registers for port control. These registers let you transmit and receive
data and enable handshaking and interrupts for each port.

Port Interface
Circuits

Each port has an interface circuit that buffers data and handshaking between

the controller IC and the port signal lines. For each port,this circuit is an 8-bit
data transceiver for the eight data lines, a receiver for each of the three input

handshake lines; and a driver for each of the three output handshake lines.

Understanding the Quad 8-bit Digital I/O Module 4-3

Peripheral Interface
Connectors

The peripheral interface connectors are two 60 pin connectors. Ports 0 and |
share connector J1, while ports 2 and 3 share connector J2. This makes it easy to
pair ports 0 and 1 or 2 and 3 for 16-bit /O operations. The pin out for these
connectors is given in Chapter 2, Configuring the Quad 8-bit Digitat /O
Module.

Data and
Handshake Lines

The Data lines
{input and Output)

Each port has eight data lines and six handshake {or peripheral control) lines.
The data and handshake lines for ports O and 1 are brought out through
connector J1. The corresponding lines for ports 2 and 3 are through connector
J2. With either SCPI commands or through register-based programming, you
can control the state of these lines. Control of 8-bit byte transfers of data;
(data, flag, and control line polarity); and handshaking are available through
SCPI. Some conirol, like peripheral interrupt control or peripheral reset, is not
available through SCPI but may be allowed with register-based programming,
Let’s look at what these lines do.

Each 8-bit port has eight data lines for parallel data transmission. Table 4-1
shows the data Hnes for the 8-bit ports and their mapping into 16-bit and 32-bit
ports.

Table 4-1. Data Lines

8-bit (BYTE) operations

Port # 0 i 2 3

Bit designations R 0| 7-emmn- 0 7------ 0] 7------ 0
16-bit (WORID) operations

Port # 0 2

Bit designations 15------ 8] 7------ 0 115------ 81 7-cmn-- 0
32-bit (LWORd) operations

Port # G

Bit designations £} 24[23------ 16/ 15------ | 7------ 0

The most significant bit is 7 for bytes, 15 for words, and 31 for long words. The
data lines of each port are bi-directional. You can enable a port for either
output or input by setting its I/O line FALSE or TRUE.

4-4 Understanding the Quad 8-bit Digital /O Moduie

The FLG Line
(input)

The CTL Lines
(Outpu)

The I/O Lines
{Output)

Other control lines

Output Handshake

Timing

Output Leading
Handshake

Each port has a flag {FLG) line. These lines are FL.G(0-3) for ports 0-3. A flag
line is an input line from a peripheral and has two states: READY and BUSY.
A flag line is normally used in conjunction with the corresponding control
(CTL) line to establish a handshake between a peripheral and the Digital /O
Module. The exact use of the flag line depends on the type of handshake in use.
Refer to Chapter 3, Using the Quad 8-bit Digital I/O Module, for the
handshaking modes used with SCPL

Each port has a control line {CTL), CTL(0-3). A coatrol lin¢ is an cutput line
from the Digital /O Module to the peripheral and has two states: FALSE and
TRUE. A control line is normally used in conjunction with the corresponding
flag line on the same port to establish a handshake between a peripheral and the
Digital 1/0 Module. The exact use of the control line depends on the type of
handshake in use. Refer to Chapter 3, Using the Quad 8-bit Digital I/O
Module, for handshake description,

Each port has an O Line, VO(0-3). An YO line is an output to the peripheral
and has iwo states: FALSE and TRUE.

s When the I/O line is FALSE, the data transceiver of that port is
enabled for output. The peripheral should respond to the signal by
enabling itself to receive data.

¢ When the /O Hne is TRUE, the data transceiver of that port is
enabled for input. The peripheral should respond to the signal by
enabling itself to send data.

Each port has several other control lines which are not supported by SCP1
commands and are accessible only at the register Ievel. Please see Appendix B
for more details on register level programuming of the Digital I/O Module.

All output handshake timing starts with the HP E1330’s [/0 line in the LOW
state (output function). The module then senses the FLG line and changes data.
After a specified time delay (Td), the module change CTL in accordance with
the following handshake modes. The peripheral device must provide at leasta
25008 FL.G pulse indicating it has latched the data. Td is a programmable time
delay using the SOURCE:DIG:DATAn HAND:DELAY (number) command or
using register based programming {see Appendix B). The following timing
diagrams show the possible handshaking modes.

The ready to busy transition of FL.G should latch the output data.

' Teye
T~ Dutpst ___L_._,.I I Faise
! i
: 1
i I
; | } Busy
LG -inpat _______:—] H Ready
T
!
! ' ! :
! f i {
‘ ; ;
Gutput Dotn ..._E !
i
|
|

280ns

Voiid Daia

Understanding the Quad 8-bit Digital I/O Moduie 4-5

Output Trailing Handshake

4-6

Pulse Handshake

Partial Handshake

Strobe Handshake

The busy to ready transition of the FL.(G line should latch the output data.
T = Ottt __._._._.i_..........} % ;::;

!

1

|

Busy
LG =tnpit _;—_l——] Ready
H

|
\
[
|
[
i
I ;
;
;
i
H

Cutpyt Doto _l

= Ta = bt 2501 el
L

Yald Dotg

LKA 7

The output data may be latched on either transition of FLG or CTL.

m True
1L~ Gutout Faise

| t

| ‘

| i

} i fusy
FLG-inpat _m Rrody

b [|

b [|

t [|

i - |
Outpul Bato_.l E { !

3— K Te E—w—-—-w—— 250ns ~——-—bl

Vohid Dote 1risa g

The HP E 1330 doesn’t check for Ready FLG. Output data should be latched on
the ready to busy transition of FLG.

True
1 Qutput] Fotse
H
H
i
Wj t...........................w...l Busy
FLG-lnpt Femrdy
Iy ! |
by i I
b \ I
(- } I
Quiput Jate _i : 1‘ ; ! L..W.m.—.ww
|
{- Ta -1 ; 250ns T 2505 : :
L !
Vaild Doto
p 1 13008 -t

No FLG line is used. The Output data may be latched on either transition of
CTL.,

| True
CTL-Dutput _,____J Fuise

|
i

i
outset Dets __| | RS Ry

I‘* Ta ; d i

E"“'"“‘“““‘“““"““‘“‘“‘“‘“““‘ Vatd Seto “““““““‘“"“‘—“—""‘"“"‘"“‘J

| ZLI30M 15

Understanding the Quad 8-bit Digital /0 Modute

Input Handshake Timing

Input Leading Handshake

Input Trailing Handshake

Pulse Handshake

Partial Handshake

Allinput handshakes start with the HP £1330 setting its I/O line high (input

mode). The module then senses the FL.G line and changes its CTL line

according to the handshake mode selected. The peripheral device must provide
at least a 25008 FLG pulse with data true at least 100nS before it is latched. The

following diagrams show the possible Input Handshaking Modes.

The ready to busy transition of the FLG line latches the input data.

' True
T Outprut ,,,,,,,,.,;,E | Fotse

H

i

i

H

§ Buty
FLG-inpot . Feady

i f 1

! ! i

! : I

| i
Output Sata "““”‘i

e Hns. ...,..%..mm 750ns o)

|
‘t Vaig Gota 4

(U

The busy to ready transition of the FLG line latches the input data.

1
Cli=Output __,_! | f:i‘:e

Busy
f1Gulnpud [Reoay

1 1
| 1
| |
| |
| |
|
|
|

Tupul Deta

t |
i 1005 —m ;

o 7H0Rg — e

vefid Dote 4 #1304 8-

The busy to ready transition of FLG latches the data.

True
CH-Outpul M_j I Felse
Husy
FLG—tnpat ! % Reody
| 1
3 H
i 4
¢ 5
Dutput Date H i !

£
; ‘,_‘L 100 =y 3

e 250y

voiid Dete { (3 20-3

The HP E1330 doesn’t check for ready FL.G. Input data is latched on the true

to false transition of CTL.

True
Cl-tvint —d I_..___.._...__.. Fatse
R T o
FLG = Ingud i Feady
: i I
£ i |
4 1 |
Il !
{ | i
mput Data) i i0bns !
N : ;!
i ; 2500 1 250 . !
! volid Oola i

£004 M3

Understanding the Quad 8-bit Digital /O Module

4-7

Strobe Handshake No FLG line is used. Input data is latched on the true to false transition of C'TL.

True
CTL=Output _; ! False
[|
\ |
\ |
#pu! Bote ! ! l
‘ [=—— 100ns ——-l |
— o — ! |
|) | F1130A TB-10
Vatid Dato A
Typicai Figure 4-3 shows the typical driver/receiver circuits that are used for digital /O
Driver/Receiver with the Digital YO Module. Dry contact closures can be detected by using the
pull-up enable 1jm’npers shown in figure 2-1.
CirCUitS DIG1TAL 140 MODULE ! PERIPHERAL
S TV TS I Bly e FEL AR —
N—— veo D8 ; [T S
— § 05 ig —
| oC N4 ; B I oe -
- 2 0| -
[O 5 I - —
g5 B e —
FEo S T i Ba
é“’ 170k o o 4 22K
fal Laget { >O
>ﬂco }>C Gl : DC
s e}
[0 B >o—
Véc V‘Ec Vé: ; é % K
K Poog
Fo e VY

E1330 Fe-3

Figure 4-3. Typical Driver/Receiver Circuit

4-8 Understanding the Quad 8-bit Digital /O Module

Quad 8-bit Digital I/0 Module Command Reference

Chapter Contents
and Description

This chapter describes Standard Commands for Programmable Instruments
(SCPI) commands and summarizes [EEE 488.2 Commmon (*) commands
applicable to the Quad 8-bit Digital I/O Module. This chapter contains the
following sections:

s Command Types...... o .. Page 5-1
¢ Common Command Format. Page 5-1
+ SCPI Command Format Page 5-1
¢ CommonCommands...........................counn. Page 5-29
s Command QuickReference........................... Page 5-30

Command Types

Common Command
Format

SCPI Command
Format

Commands are separated into two types: IEEE 4882 Common Commands and
SCPI Commands.

The IEEE 488.2 standard defines the Common commands that perform
functions like reset, self-test, status byte query, etc, Common commands are four
or five characters in length, always begin with the asterisk character (*), and may
include one or more parameters. The command keyword is separated from the
first parameter by a space character. Some examples of Common commands are
shown below:

*RST *ESR32 *8TB?

The SCPI commands perform functions like closing switches, making
measurements, and querying instrument states or retrieving data. A subsystem
command structure i$ a hierarchical structure that usually consists of a top level
{or root) command, one or more lower level commands, and their parameters.
The following example shows part of a typical subsystem:

[SOURce:}
DIGital
DATAR
[:VALue]?
BITm?

SOURce: is the root command, DIG#al is a second level command, :DATAn is
a third level command where n is the port number 0 - 3, and :VALue and :BITm
are fourth level commands where m is the queried bit location.

Quad 8-bit Digital /O Module Command Reference 5-1

Command Separator A colon (z) always separates one command from the next lower level command.
This is illustrated as follows:

MEASure:DIGitalDATAMVAL ue?

Colons separate the root command from the second level (ME A Sure:DIGital)
and the second from third level (DIGital. DATAR), and so forth.

Abbreviated Commands The command syntax shows most commands as a mix of upper and lower case
letters. The upper case letters indicate the abbreviated spelling for the
command. For shorter program lines, send only the abbreviated form. For
better program readability you may send the entire command. The instrument
will accept either the abbreviated form or the entire command.

For example, if the command reference syntax shows the command ME ASure,
then MEAS and MEASURE are both acceptable forms. Other forms of
MEASure, such as MEASU or MEASUR will generate an error.

The instrument does not distinguish between upper case and lower case
characters. Therefore MEASURE, measure, and MeAsUTrE are all acceptable.

implied Commands Implied commands appear in square brackets ([]} in the command syntax.
(Note that the brackets are ot part of the command and are not sent to the
instrument.) Suppose you send a second level command but do not send the
preceding implied command. In this case, the instrument assumes you intend to
use the implied command and it responds as if you had sent it. Examine this
excerpt from the SOURce subsystem shown below:

[SOURce:]
DiGital
DATAR
[:VALue] < parameter>
BITm< parameter>

The root command SOURce and the keyword VALue are implied. To set the
instrument to output a logical 1 to bit 0 of port 3, you may send either
SOURce:DIGital:DATA3:BITO 1, or DIGital:DATA3:BITS 1.

For examples in this manual the root command and implied keywords are not
used.

Short Commands Command keywords can be entered in their full form, as shown above, or can be
entered in their short form. In this manual, the entry required in short form
commands is always capitalized. The example above may be entered as
SOURce:DIGital:DATAI:BITG 1, or SOUR:DIG:DATA3:BITO 1

For examples in this manual the short form is generally used.

5-2 Quad 8-bit Digital /0 Module Command Reference

Parameters Parameter Types. The following table contains explanations and examples of
parameter types you might see later in this chapter.

Parameter Type Explanations and Examples

Numeric Accepts all commonly used decimal representations of
numbers including optional signs, decimal points, and
scientific notation.

123, 123E2, -123, -1.23E2, .123, 1.23E-2, 1.23000E-0L.
Special cases include MIN, MAX, and INF.

Boolean Represents a single binary condition that is either
true or false.

ON, OFF, 1, 0.

Discrete Selects from a finite number of values, These parameters
use mpemonics to represent each valid setting.

An example is the DIGital:CONTrolnPOLarity < polariny>
command where polarity can be POS or NEG.

Optional Parameters. Parameters shown within square brackets ([1) are
optional parameters. (Note that the brackets are not part of the command and
are nol sent to the instrument.) If you do not specify a value for an optional
parameter, the instrument chooses a default value. For example, consider the
DISPlay MONitor:PORT? [« MINt MAXI| DEF> | command. If you send the
command without specifying a parameter or send the DEY parameter, the
mainframe displays the state of the port last addressed. If you send the MIN
parameter, the mainframe displays the port 0 state. If you send the MAX
parameter, the mainframe displays the port 3 state. Be sure to place a space
between the command and the parameter.

Linking Commands Linking IEEE 488.2 Common Commands with SCPI Commands. Use a
semicolon between the commands. For example:

*RST;DIG:CONT2 1 or DIG:CONT2:POL POS;*IDN?

Linking Multiple SCP1 Commands. Jse both 4 semicolon and a colon between
the commands. For example:

DIG:DATA2:POL. NEG;:DIG:DATA2:BIT1 1

Quad 8-hit Digital I/O Module Command Reference 5-3

DiSPlay:MONitor [:STATe]

DiSPiay:MONitor [:STATe]

SCP! Command
Reference

This section describes the Standard Commands for Programmable Instruments
{SCPI) commands for the Quad 8-bit Digital I/O Module. Commands are listed
alphabetically by subsystem and also within each subsystem. Command guides
are printed in the top margin of each page. The left guide indicates the first
command listed on that page. The right guide indicates the last command histed
on that page. Where only a single command appears on a page, the left and right
guides will be the same.

DISPlay Subsystem

Syntax

DISPlay:MONitor
[:STATe]

Parameter

Comments

Example

The DISPlay subsystem turns on the Monitor mode of the display and shows the
module identification in the display (HP E 1301 Mainframes only). The
parameters displayed are:

port number

polarity

handshake mode

state of the control line

state of the flag line

values on the data lines in both decimal and hexadecimal

e & & B ¢ #

DISPlay
MO Nitor
[[STATe] < Boolean>
PORT < numericl AUTO>
PORT? [« MAXIMINIDEF> |

DISPlay:MONitor{ :STATe] < Boolean> turns the monitor mode on and off.

Parameter Parameter Range of Default
Name Type Values Units
STATe Boolean 0of 1, OFF or ON None

e Shows state of the last port programmed by a command.

¢ Related Commands:
DISPlay:MONItor:PORT
DESPlay:MONItor:PORT?
¢ *RST Condition: OFF

DISP:MON ON displays the state of the last port programmed.

5-4 Quad 8-bit Digital {/O Module Command Reference

DISPlay:MONitor:
PORTn

DISPlay:MONitor:
PORTn

Parameters

Comments

Example

DISPlay:MONitor:
PORT?

Parameters

Commenis

Example

DISPlay:MONitor: PORT?

DISPlay:MONitor:PORT# turns the monitor mode ON for port n.

Parameter Parameter Range of Default
Name Type Values Units
PORT Numeric none, 0, 1,2, 0r3 0

or
Discreet AUTO

» In the AUTO mode of operation, the display shows the state of the
port last programmed.

+ Related Commands:
DISPlay:MONItor[:STATe]
DISPlay:MONItor;PORT?

« *RST Condition: AUTO

DISP:MON:PORTS3 displays the state of port 3,

DISPlay:MONitor:PORT? [< MAXI MIN! DEF> |, with no parameter, returns
the identification of the port monitored. If AUTO was selected as the port
parameter in the DISP:IMON:PORT AUTO command, the query returns a -1, If
DEF is specified, the query always returns 0. If MAX is specified, the query

_returns the maximum port (always 3). If MIN is specified, the query returns the

minimum port (always 0).

Parameter Parameter Range of Default
Name Type Values Units
PORT? Optional None None
or
Discrete MAX, MIN, or DEF

¢ This command is included to comply with IEEE-488.2 syntax
requirements.

¢ Related Commands:
DISPlay:MONitor:PORT
DISPlay:MONitor{ :STATe]

+ *RST Cendition: Not applicable.

DISP:MON:PORT? identifies the port being monitored.

Quad 8-bit Digital I/0 Module Command Reference 5-5

MEASute:DIGital :DATAN:type]

[VALue]? MEASure:DIGital :DATAn[:type]
MEASure The measure subsystem defines the command set for the Digital I/O moduie
Sub syste m input statements
Syntax MEASure
:D1Gital
DATAn
EBYTE]:VALue}?

BYTELBITm?
[EBYTE]ITRACe < name>
‘WORD[:VALue]?
WORD:BITm?
WORDITRACe < name>
LWORA[:VALue]?
LWORA:BITm?
TWORA:TRACe < name>
FLAGn?

MEASure:DIGital MEASure:DIGital:DATAn] :BYTE]{ :VALue] ? reads one byte from 8-bit port n
:DATAN[:type] after the completion of the handshake.

[VALue]?

MEASure:DIGital:DATA#:WORD] :VALuze] ? reads one word (2 bytes) from
16-bit port n after the completion of the handshake.

MEASure:DIGital:DATAn:LWORGA] :VALue] ? reads one longword (4 bytes)
from the 32-bit port after the completion of the handshake.

Parameters Parameter Parameter Range of Default

Name Type Values Units

DATA Numeric BYTE none, 0,1,2,3 0
WORD none,,or 2
L.WORAd noneor O

Comments

:DATAn is the keyword used for commands relating to the data at

port n. The port number n must be next to the last character of the
keyword without spaces.

¢ Input data from the Digital O is always assumed to be in decimal
format. Other formats are not supported for input. However, data
output to the Digital I/0 may be in binary, octal, decimal, or

hexadecimal.

¢ Related Commands:
[SOURce:] DIGital:DATAR] :type] | :VALue]
MEASure:DIGital:DATAn] :type] :BITm?

¢ *RST Condition: Set 1o input positive true on all ports.

Example MEAS:DIG:DATA1? reads 8-bit port I data.

5-6 Quad 8-bit Digital IO Module Command Reference

MEASure:DIGital :DATAN:type]:BITm? MEASure:DiGital :DATA[Aypel:BITm?

MEASure:DIGital
:DATAN[:type]:BITm?

Parameters

Comments

Example

MEASure:DIGital:DATAn:BYTE:BI'Tm ? reads bit m of 8-bit port n after the
completion of the handshake.

MEASure:DIGital:DATAn:WORD:BITm? reads bit m of 16-bit port n after the
completion of the handshake.

MEASure:DIGital:DATAA:LWORA:BITm ? reads bit m of the 32-bit port after
the completion of the handshake.

Parameter Parameter Range of Default
Name Type Values Units
DATA Numeric BYTE none,(,1,2,3 0

WORD none,0,0r2
LWORd noneorf

BIT Numeric BYTE O-7 None
WORD 0-15
LWORd 0-31

s :DATAnR is the keyword used for commands relating to the data at
port n. The port number n must be next to the last character of the
keyword without spaces.

¢ :BITm is the keyword that specifies the bit within the eight-bit byte
that 1s read by this command. Like the DATAxn keyword, no space
can be between the keyword BIT and the bit number m parameter,

» Input data is always assumed to be in binary format, since oniya
single bit of data is being read.

¢ *RST Condition: Set to input on all ports.

MEAS:DIG:DATAL:BIT4? reads port 1, bit 4.

Quad 8-bit Digital /O Module Command Reference 5-7

MEASure:DIGital :DATAnf:type]:TRACe < name> MEASure:DIGital :DATAN:type]:TRACe < name>

MEASure:DiGital
:DATAN[:type]:TRACe
< hame>

Parameters

Comments

Example

MEASure:DIGital:DATAR[BYTE]: TRACe< name> reads 8-bit port n after
the completion of the handshake.

MEASure:DIGital:DATAn:WORD:TRACe< name> reads 16-bit port n after
the completion of the handshake.

MEASure:DIGital:DATAn:LWORd:TRACe< nagme> reads the 32-bit port
after the completion of the handshake.

Parameter Parameter Range of Defauit
Name Type VYalues Units
DATA Numeric BYTE none,(, 1,2, or 3 0

WORD anone,(,or 2
LWORd noneor0

< name> String previously defined block name | None

{max 13 characters)

:DATAn is the keyword used for commands relating to the data at
port n. The port number n must be next to the last character of the
keyword without spaces.

TRACe< name> is the keyword (maximum 13 characters) that
specifies the block where the data should be stored. This block must
previously have been previously defined by the

[SOURce] :DIGital:TRACe:DEFINE command.

Input data is always assumed to be in decimal format. Other formats
are niot supported for input; however, data output may be in binary,
octal, decimal or hexadecimal.

Related Commands:
MEASure:DIGital:DATAn[:VALue]?
SOURce:DIGital: TRACe:DEFINE

*RST Condition: Set to input on all ports.

MEAS:DIG:DATAO:WORD:TRACe first_block reads data from port 0 and
stores it in the yser memory location first_block.

5-8 Quad 8-bit Digital I/O Module Command Reference

MEASure:DiGital :FLAGn?

MEASure:DIGital
(FLAGn?

Parameters

Comments

Example

MEASure:DiGital :FLLAGn?

MEASure:DIGitalFEAGr? reads the status of the flag line on port n and
returns a 0 or 1 to show whether a peripheral has set the flag line to READY or
BUSY.

Parameter Parameter Range of Default
Name Type Values Units
FLAG Numeric none, 0, 1,2, 0r 3 0

* MEASure:DIGital:FLAGn? is used (o implement custom
handshakes.

¢ FLAGn i3 the keyword used for commands relating to the flag line at
port #. The port number # must be next to the last character of the
keyword without spaces.

* Related Commands:
{ SOURce:} DIGital:CONTroln:POLarity?
[SOURce:] DIGital:CONTroln| : VALue}
[SOURce:} DIGitalb,FEAG#:POLarity
[SOURce:] DIGitalFLAGA:POLarity?

MEAS:DIG:FLAG17? reads the portl flag line.

Quad 8-bit Digital /0 Module Command Reference 5-9

MEMory:DELete :MACRo< name> MEMory:DELete :MACRo< name>

MEMory
Subsystem

Syntax

MEMory:DELete
‘MACRo< name>

Parameters

Comments

Example

The memory subsystem defines the command set for enabling the use of external
VME memory commands and for managing macros. The incoming data (from
user) is stored in IEEE block format and output data is stored in NR] format.
The addressable range is # h200000 through # hDFFFFS in A24 space.

MEMory

DELete:MACRo< string>

VME:
ADDRess < numeric>
ADDRess?
SIZE < numeric>
STATe< boolean>
STATe?

MEMory:DELete:MACRo< name> deletes a macro previously recorded using
Common commands.

Parameter Parameter Range of Default
Name Type Values Units
< name> String Previously defined block name None
(maximum 13 characters)

¢ < name> must have been previously defined by a *DMC (Define
Macro) Common command.

» The maximum length for < name> is 13 characters.
¢ The difference between this statement and the Common command
statement *PMC (Purge Macros) is that the Common command has

110 provisions {or deleting a single macro.

MEM:DEL:MACR test_macro deletes the macro named rest_macro which has
been previously defined using IEEE 488.2 Common commands.

5-10 Quad 8-bit Digital /O Module Command Reference

MEMory:VME :ADDRess < base> < address> MEMory:VYME :ADDRess < base> < address>

MEMory:VME MEMory:VME:ADDRess < base> < address> establishes the address of
‘ADDRess add-on VME memory in the system.

< base> < address>

Parameters Parameter Parameter Range of Default
Name Type Values Units
ADDRess Numeric # H200000 - # HDFFFF8 None
or
Discrete MIN or MAX
Comments » Addresses are accepted in either decimal or hexadecimal.

s < base> specifies the numeric format as decimal, hexadecimal,
octal, or binary, TEEE-488.2 specifies the following values for this
parameter:

Decimal = no parameter
Hexadecimal= #H
Octal= #Q

Binary= #B

* Valid values for < address> are # H200000 (2,097,152 decimal)
through # HDFFFEE (14,680,056 decimal).

¢ For this memory to actually be used it must also have a defined
length and have been turned ON using the MEMory, VME:STATe
command.

¢ Related Commands:
MEMory:VME:SIZE< size>
MEMory:VME:STATe< ON or OFF>

= *RST Condition: # h200000.

Example MEM:VME:ADDR # H200800 scts the starting VME address to 20000016.

Quad 8-bit Digital /O Module Command Reference 5-11

MEMory:VME :ADDRess?
[< MINI MAX>]

MEMory:VME
:ADDRess?
[< MIN! MAXG]

Parameters

Comments

MEMory:VME:SIZE
< Size>

Parameters

Comments

MEMory:VME:SIZE < size>

MEMory:VME:ADDRess? [< MIN | MAX> | queries for the current VME
memory address. The optional parameter lets you guery for the fixed minimum
or maximum address.

Parameter Parameter Range of Default
Name Type Values Units
ADDRess Discrete none, MIN, or MAX None

» This command always returns the address in decimal format

* The address returned using MIN is always 2,097,152
¢ The address returned using MA X is always 14,680,056.

* Related Commands:
MEMory:VME:ADDRess?
MEMory:VME:STATe?
MEMory:VME:SIZE?[< MIN or MAX> |

MEMory:VMESIZE | < base> 1< size> sets the size in bytes of the external
memory board.

Parameter Parameter Range of Default
Name Type Values Units
< base> Piscrete None or#H None
< size> Numeric 0 - # hEOGOO0 None
or or
Discrete MIN or MAX None

e Address plus size must not exceed # hEQGOO0)

o Sizes are accepted in either decimal or hexadecimal.

¢ < base> specifies the numeric format as decimal, hexadecimal,
octal, or binary. IEEE-488.2 specifies the following values for this
parameter:

Decimal = no parameter
Hexadecimal= # H
Octal= #Q

Binary= #B

¢ Related Commands:
MEMory:YME:ADDRess?
MIEMory:VME:STATe?
MEMory:VME:SIZE?

5-12 Quad 8-bit Digital IO Module Command Reference

MEMory:VME:SIZE? [< MIN | MAX] MEMory:VME:STATe?

¢ *RST Condition: # h000000.

MEMory:VME:SIZE? MEMory:VME:SIZE? [< MIN | MAX>] queries for the current VME
[< MIN [MAX>] memory size. The optional parameter lets you guery for the fixed maximum or
minimum VME memory size.

Parameters Parameter Parameter Range of Defauit
Name Type Values Units
]
| SIZE Discrete MIN or MAX None
Comments ¢ This command always returns the memory size in decimal format.

» The size returned using MIN is always 0.
* The size returned using MAX is always 12582912

* Related Commands:
MEMory:VME:ADDRess?] < MIN or MAX> |
MEMory:VME:STATe?

MEMeory:VMESSIZE < size>

MEMory:VME:STATe MEMory:VME:STATe < state> enables/disables the use of VME memory for

< slales> storage.
Parameters Parameter Parameter Range of Default
Name Type Values Units
STATe Boolean Oor I, OFF or ON None
Comments ¢ Related Commands:

MEMory:YME:ADDress < address>
MEMory:VME:SIZE < size>

+ *RST Condition: Set to OFF.

Example MEM:YME:STAT ON enables access (o the VMEmemory.

MEMory:VME:STATe? MEMory:VME:STATe? queries the state of the external memory flag.
Parameters None
Comments ¢ Related Commands:

MEMory:VME:ADDRess?| < MIN or MAX> |
MEMory:VMESIZE?[< MIN or MAX>]

Quad 8-bit Digitai I/0O Module Command Reference 5-13

MEMory:VME:STATe? MEMory:VME:STATe?

. he ce subsystem defines the command set for the Digita module

SOURce: The SOUR fi for the Digital I/0 modul
output statements. It also defines the state and polarity of the control line

SUbSVStem (CTL), the polarity of the flag line (F1.G), the bandshaking mode, and delay for
both data input and output. The root command, SOURce, is optional.

Syntax [SOURCE:]
DIGital
‘TRACe
:CATalog?
[[DATAJ string> < block_data>
[DATA]?< string>
:DEFine< string> < numeric> [numeric}
DELete:NAME]< string>
DELete:ALL
:CONTroln
:POLarity< POS| NEG>
:POLarity?
[[VALuel< GQor 1>
DATAR
BYTE]
BITm < Qor 1>
:POLarity < POS or NEG>
:POLarity?
[[VALue] < numeric>
‘HANDshake
:DELay < numeric>
:DELay?
[[MODE] <« NONEILEADingl TR Ailing
| PULSel PARTiall STRobe>
[MODE}?
‘TRACe < name>
‘WORD
BlTm< Qor 1>
:POLarity < POS or NEG>
:POLarity?
[[VALue] < numeric>
:HANDshake
:DELay < numeric>
:DELay?
[IMODE] <« NONEILEADingl TR Ailing
| PULSel PARTiall STRobe>
LIMODE]?
TRACe < name>

5-14 Quad 8-bit Digital 170 Moduie Command Reference

DiGital: TRACe :CATalog?

DiGital: TRACe
:CATalog?

Parameters

Comments

DIGital. TRACe
[:DATA] < name>
< block_data>

Parameters

Comments

DiGital: TRACe [:DATA] < name> < block_data>

LWORD
BITm < Oor 1>
:POLarity < POS or NEG>
:POLarity?
{\VALue] < numeric>
‘HANDshake
:DELay< numeric>
:DELay?
IIMODE] < NONEILEADingl TR Ailing
| PULSel PARTiall STRobe>
MODET?
‘TRACe < name>
:HANDshaken
‘DELay < numeric>
:DELay?
[(MODE] < NONEILEADingl TR Ailing
I PULSe! PARTiall STRobe>
[[MODE]?
FLAGH
:POLarity < POS or NEG>
POLarity?

[SOURce:} DIGital: TRACe:CATalog lists the currently available data blocks.

None

¢ This command catalogs all blocks in VME memory and all blocks in
the mainframe system memory.

[SOURce:] DIGital: TRACe[:DATA] < name> < block_data> writes a block
of data to a previously defined user memory block.

Parameter Parameter Range of Default
Name Type Values Units
< name> String Name of user memory block None
(maximnum 13 characters)
< block_data> | Numeric/String Numeric header and None
ASCII block data

* < pame> must have been previously defined bya
MGital:TRACe:DEFine command.

e The maximum length for < name> is 13 characters.

Quad 8-bit Digital I/O Module Comimand Reference 5-15

DiGital:TRACe [:DATA]? < name>

Example

DIGital:TRACe
[:DATA]? < name>

Parameters

Comments

Example

DiGital:TRACe
:DEFine < name> ,
< size>, [< fill>]

Parameters

Comments

DiGital:TRACe :DEFine < name> ,

< gize> , [« fill>]

s < block_data> is of the form # < digits> < length> < block> where:
< digits> tells how many digits are used to define < length> ;
< length> tells how many bytes are to be transferred in < dara> ;
< data> contains the actual data to transfer.

DIGTRAC:DATA first_block, # 210ABCDEFGHI1]} sends the data

“ABCDEFGHII” to the user memory block firss_block.

[SOURce:] DIGital:TRACe! :DATA] < name> reads a block of data from a
previously defined user memory block,

Parameter Parameter Range of Default
Name Type Values Units
< pame> String Name of user memory block None
{(maximum 13 characters)

¢ < pame> must have been previously defined by a
DIGitah: TRACe:DEFine command.

+ The maximum length for < name> is 13 characters.

DIG:TRACe? first_block reads data from a block named first_block.

[SOURce:] DIGital:TRACe:DEFine < name> , < size>, [< fill>] defines a
block of data as a user memory block, names the block for future reference, and
fills the block with the last parameter. If the last parameter is absent, the block
is filled with zeros.

Parameter Parameter Range of Default
Name Type Values Units
< name> String Name of user memory block None
{maximum 13 characters)
< size> Numeric Up to 4(Gbytes (depending on None
memory installed)
< fill>» Numeric 0-255 None

e The firmware can handle blocks with a total memory space of up to
12Mbytes of memory space. The actual amount available depends
on the memory installed.

¢ [fthe MEMory:VME:STATe ON command has been used, this
command will create blocks in the external add-on memory. If the
MEMory: YME:STATe OFF command has been used, this command
will create blocks in the system memory.

5-16 Quad 8-bit Digital /0 Module Command Reference

DiGital:TRACe :DEFine? < name>

Example

DiGital: TRACe
:DEFine? < name>

Parameters

Comments

DiGital: TRACe
:DELete < name>

Parameters

Comments

Example

DIGital:TRACe
:DELete:ALL

Parameters

DIGital:CONTroln
:POLarity< polarity>

DiGital: CONTroln :POLarity< polarity>

DIG:TRAC:DEF first_block, 256 defines a 256 byte user memory block named
first_Block.

[SOURce:] DIGital: TRACe:DEFine? < name> returns the size of a previously
defined user memory block in bytes.

< name>
Parameter Parameter Range of Defauit
Name Type Values Units
< name> String Name of user memory block None
{maximum 13 characters)

® < namie> must have been previously defined by a
DIGital: TRACe:DEFine command. The maximum length for
< name> is 13 characters.

[SOURce:]DIGital: TRACe:DELete < name> deletes a previously defined user
memory data block.,

Parameter Parameter Range of Default
Name Type Values Units
< name> String Name of user memory block None
{maximum 13 characters)

® < name> rust have been previously defined bya
DIGital: TRACe:DEFine command. The maximum length for
< name> 18 13 characters,

DIG:TRACe:DEL first_block deletes a user memory block named first_block.

[SOURce:] DIGital:TRACe:DELete:ALL deletes all previously defined user
memory data blocks.

None

[SOURce:| DIGital:CONTroln:POLarity < polarity> sets the voltage level for
logical true in port n to either TTL high for POSitive polarity or TTL low for
NEGative polarity.

Quad 8-bit Digital /O Moduie Command Reference 5-17

DIGital:CONTroln :POLarity?

Parameters

Comments

Example

DIGital:CONTroln
:POLarity?

Parameters

Exampie

DIGital:CONTroln
[:VALue]< value>

Parameters

Comments

DiGital: CONTroin [:VALue] < value>

Parameter Parameter Range of Default
Name Fype Values Units

CONTrol Numeric none, &, 1,2, or 3 0

POLarity Discrete POSitive or NEGative None

s Control lines are always accessed by their 8-bit port number

:CONTroln is the keyword used for commands relating to the control
(CTL) line at portn. The port number 1 must be next to the last
character of the keyword without spaces.

The controt ling is used with the flag line to handshake data to and
from peripherals.

Related Commands:

[SOURce:] DIGital:CONTroln:POLarity?
fSOURce:] DIGital:CONTroln[:VALue]

[SOURce:] DIGital:FLAGn:POLarity
[SOURce:] DIGital:FLAGn:POLarity?

*RST Condition: POLarity= POSitive

DIG:CONT®:POL POS sets logical true to TTL high on port 0 control line.

[SOURce:] DIGital:CONTroln:POLarity? returns either POSitive or NEGative
for the logical true condition of the control (CTL) line of port a.

Parameter Parameter Range of Defauit
Name Type Values Units
CONTrol Numeric none, 0, 1,2, 0r 3 0

DIG:CONTO:POL? queries the state of the logical true condition on port 0.

[SOURce:] D1Gital:CONTroln[:VALue] < value> sets or clears the control line

on the selected port n.

Parameter Parameter Range of Default
Name Type Values Units

CONTrol Numeric none, 0, 1,2, 0r 3 0

< value> Boolean Gor 1, OFF or ON None

¢ This command is used to create custom handshakes when the
HANDshake is set to NONE.

5-18 Quad 8-bit Digital /O Module Command Reference

DIGital:DATAn [:typel:BITm < value> DiGital:DATAnN [:type]:BITm < value>

Example

DIGital:DATAnR
[:type]:BITm
< value>

Parameters

Comments

Example

:CONTroln is the keyword used for commands relating to the control
(CTL) lne at port . The port number £ must be next to the last
character of the keyword without spaces,

¢ The control line is used with the flag line to handshake data to and
from peripherals,

s Related commands:
[SOURce:] DIGital:CONTroln:POLarity
[SOURce:| DIGital:CONTroln:POLarity?
[SOURce:] DIGital:FLAGA:POFLarity
[SOURce:] DIGi€al:FLAGn:POLarity?

¢ *RST Condition: Clears the control line; i.e., sets the control line to
logical 0.

DIG:CONT2 1 sets the 8-bit port 2 control line true.

[SOURce:] DIGitakDATAn[:BYTE]:BITm < value> writes data to port # and
bit m.

[SOURce:] DIGital:DATAn:WORED:BITH < value> writes data to word n and
bit m.

[SOURee:} DIGital:DATAn:LWORA:BITm < value> writes data to longword n
and bit m.

Parameter Parameter Range of Default
Name Type Values Units
DATAnR Numeric BYTE none,0,1,2,0r3 0

WORD none, 0, or2
LWORd noneor(

BITm Numeric BYTE 0-7 None
WORD 0-15
LWORd 0-31

< value> Numeric Oorl Nong

* :DATAn and :BITm are the keywords used to write data to port n
and bit m. The port number n and bit number m must be next {o
the last character of the keyword without spaces.

¢ For 16-bit operations using :WORD, n must be Qor 2.

» For 32-bit operations using :LWORM, n must be 0.

¢ Related commands:
| SOURce:] DIGital:DATA#[: VALue]

{ SOURce:] MGital:DATAn:POLarity
¢ *RST Condition: All ports are set for data input.

DIG:DATA3:BIT4 1 sets bit 4 (the 5th bit) of port 3 1o logical 1.

Quad 8-bit Digital IO Module Command Reference 5-19

DIGital:DATAn [:type]: TRACe< name> DIGital:DATAn [:type]: TRACe< name>

DlGital:DATAn [SOURce:] DIGital:DATA#[:BYTE]:TRACe < name> writes the named block
[:type]l:TRACe< name> of data to 8-bit port n whenever the port is in ready state 1o starf a new
handshake.

[SOURce:] DIGital:DATA:WORD:TRACe < name> writes the named block
of data to 16-bit port n whenever the port is in ready state to start a new
handshake.

[SOURce:|DIGital:DATAR:LWORA'TRACe < name> writes the named block
of data to the 32-bit port whenever the port is in ready state to start a new

bandshake.
Parameters Parameter Parameter Range of Default
Name Type Values Units
DATAn Numeric¢ BYTE none,0,1,2,0r3 0
WORD none,0, or2
LWORd noneor(
< name> String Name of user memory block None
{maximum 13 characters)
Comments = DATAn and TRACe are the keywords used to write data to port n

from block < name> . The port number n must be next to the last
character of the keyword without spaces.

e For 16-bit operations using :WORD, n must be Gor 2.
e Tor 32-bit operations using :LWORM, n must be (.
¢ Related commands:

[SOURce:] DIGitak:DATAn[:VALue]

[SOURce:] DIGital:DATAn:POLarity

¢ *RST Condition: All ports are set for data input.

Example DIG:DATA2:TRAC:WORD first_block writes data from the user memory
block first_block to 16-bit port 2.

5-20 Quad 8-bit Digital I/O Module Command Reference

DIGital:DATAR [:type]:POLarity < polarity> DiGital:DATARN [:type]:POLarity?

DiIGital:DATAN
[:type]:POLarity
< polarity>

Parameters

Comments

Example

DIGital:DATAN
[type]:POLarity?

[SOURce:}DIGital:DATAn:POLarity < polarity> sets the voltage level for
logical true in port # to either TTL high for POSitive polarity or TTL low for
NEGative polarity.

[SOURce:} DIGital:DATAn:POLarity:WORD < pelarity> sets the voltage jevel
for logical true in both 8-bit ports involved to either TTL high for POSitive
polarity or TTL low for NEGative polarity.

{ SOURce:] DIGital:DATAn:POLarity:LWORM < polarity> sets the voltage level
for logical true in all ports to either TTL high for POSitive polarity or TTL low
for NEGative polarity.

Parameter Parameter Range of Default
Name Type Values Units
DATA Numeric BYTE none,0,1,2,0r3 0

WORD none, 0, or2
LWORd noneor ()

POLarity Discrete POSitive or NEGative None

¢ :DATAn is the keyword used for commands relating to the control
line at port n. The port number n must be next to the last character
of the keyword without spaces.

» Related Commands:
[SOURce:] DIGital:DATAn:POLarity?
[SOURce:] DIGital:DATAn] :VALue]
{SOURce:] DIGital:DATAR:BI'Em

s *RST Condition: POLarity = POSitive

DIG:DATA0:POL POS sets logical true to TTL high on port Q data knes,

[SOURce:| DIGital:DATAxn[:BYTE]:POLarity? returns either POSitive or
NEGative as the logical true condition of the data lines of 8-bit porta.

[SOURce:| DEGital:DATAn: WORD:POLarity? returns either POSitive or
NEGative as the logical true condition of the data lines of 16-bit portz.

[SOURce:] DIGital:DATAnLWORA:POLarity? returns either PO Sitive or
NEGative as the logical true condition of the data lines of the 32-bit port.

Quad 8-bit Digital VO Module Command Reference 5-21

DiGital:DATAA :type] [:VALue] < vaiue>

Parameters

Example

DIGital:DATAN[type]
[:VALue]< value>

Parameter

Comments

DiGital:DATAN[:type] [:VALuUe] < value>

Parameter Parameter Range of Defautt
Name Type Values Units
DATA Numeric BYTE none,0,1,2,0r3 None
WORD none, 0, or2
LWORd noneor
POLarity Discrete PO Sitive or NEGative None

DIG:DATAG:POL? returns the state of the logical true condition on port 0 as
either PO Sitive or NEGative.

[SOURce:] MGital:DATAR[:BYTE][:VALue)

{ < base> 1< value> writes

data to 8-bit port n . Values can be binary, octal, decimal, or hexadecimal.

[SOURce:] DIGital:DATAR:WORD| :VALue] [< base> 1< value> writes data
to 16-bit port n . Values can be binary, octal, decimal, or hexadecimal.

[SOURce:] DIGital:DATAn:LWORGM| :VALue] [< base> < value> writes
data to the 32-bit port. Values can be binary, octal, decimal, or hexadecimal.

Parameter Parameter Range of Default
Name Type Values Units
DATA Numeric BYTE none,0,1,2,0r3 0

WORD none,(,or2
LWORd noneor(
< base> Discrete None, #H,#Q,or#B None
< value> Numeric BYTE -2'to (23-12 Decimal
WORD -2 o+ (2151
LWORdA -0+ (27D

s < base> specifies the numeric format as decimal, hexadecimal,
octal, or binary. IEEE-488.2 specifies the following values for this
parameter:

Decimal = no parameter
Hexadecimal= #H
Octal= #Q

Binary= #B

* :DATA# is the keyword used for commands relating to data output at
port ni. The port number n must be next to the last character of the
keyword without spaces.

¢ Related commands:
[SOURce:| DIGital:DATAn:BFTm
[SOURce:] DIGital:DATAn:POLarity

5-22 Quad 8-bit Digitat I/O Module Command Reference

DIGital:FLAGn :POlarity < pofarity> DIGital:FLAGn :POLarity?

Example

DIGital:FLAGn
:POLarity < polarity>

Comments

Example

DiGital:FLAGn
:POlLarity?

Example

+ *RST Condition: All ports are set for data input.

DIG:DATA3 27 writes the binary equivalent of the decimal 27 (00011011) to
8-hit port 3.

DIG:DATA3 # B00011011 writes the same byte of data as above to port 3 in
binary format.

[SOURce:] DIGital:FLAGn:POLarity < POS or NEG> sets the voltage level
for logical true to either TTL high, POSitive, or TTL low, NEGative on the
FAGine:

Parameter Parameter Range of Default
Name Type Values Units
FLAG Numeric none, 0, 1,2, 0r 3

POLarity Discrete POSitive or NEGative None

» :FLAGn is the keyword used for commands relating to the flag line at
port n. The port number n must be next to the last character of the
keyword without spaces.

¢ Related Commands:
[SOURce:] D1Gital:FLAGn:POLarity?
{ SOURce:] DIGital: CONTroln:POLarity
[SOURce:]| DIGitah:CONTroln:POLarity?
s *RST Condition: POLarity= POSitive

DIG:FLAGH:POL POS sets logical true to TTL high on the port § flag line.

[SOURce:] DIGital:FLAGn:POLarity? returns either POSitive or NEGative as

the logical true condition of the flag (FLG) line.
Parameter Parameter Range of Default
Name Type Values Units
FLAG Numeric none, O, L, 2,0r3 None

SOURCEDIGITAL:FEAGO:POLARITY ? uses long commands to query the
state of the logical true condition on port (.

DIG:FLAGO:POL? performs the same function as the example above with short
commands.

Quad 8-bit Digital /0 Module Command Reference 5-23

DiGital:DATAn:type] :HANDshake:DELay < time> DIGial:DATAnM[:type] :HANDshake:DELay < iime>

DiGital:DATAN| :type] [SOURce:] DIGital:DATAn] :BYTE]:HANDshake:DELay < rime> sets the
:HANDshake:DELay delay between data output and the control line for data output at 8-bit port n. It
< time> also sets the strobe pulse width for both output and input STROBE handshakes.

[SOURce:]DIGital:DATA7:WORD:HANDshake:DELay < rime> sets the
delay between data output and the control line for data output at 16-bit port n

[SOURce:I DIGital:DATAn:LWORd:HANDshake:DELay < fime> sets the
delay between data output and the control line for data output at the 32-bit port.

Parameters Parameter Parameter Range of Default
Name Type Values Units
DATA Numeric BYTE nunomne,(,1,2,0r3 0
WORD none,0,or2
LWORd noneor(
< time> Numeric Zusto ISus Seconds
20usto 150 us
200usto 1.5ms
2ms to 15ms
Comments ¢ DATAn] :type] :HANDshake is the sequence used for commands

relating to data handshaking at ports defined by n. The port number
n must be next to the last character of :DATA without spaces.

* DIGital:HANDshaken NONE command sets the delay o 0. For all
other modes of handshaking 2 ys is the minimum.

» Bands of delay settings are not allowed. these are;

15usto 2.0us
150 us to 200 us
1.5ms to 2.0 ms

The controlier places closest rounded-up value in the parameter
field if these values are specified.

¢ Related commands:
[SOURce:] DIGital:HANDshaken| :MODE]
[SOURce:] DIGital:CONTroln:POLarity
{ SOURce:] DIGital:CONTroln| :VALue]
[SOURce:] DIGital:FLAGn:POLarity

* *RST Condition: Delayis set to 2 us.

Example DIG:HAND3:DEL .005 sets the delay between the data output and the
assertion of the control line to true on 8-bit port 3 to 5 ms.

5-24 Quad 8-bit Digital /O Module Command Reference

DIGital:DATAn:type] :HANDshake:DELay? DiGital:HANDshaken :DELay < time>

DIGital:DATAA[:type]
:HANDshake:DELay?

Parameters

Comments

DIGital:HANDshaken
:DELay < time>

Parameters

[SOURce:] DIGital:DATAn| :BYTE| :HANDshake:DELay? queries for the delay
time between data output and the control line for data output at 8-bit port n.

{S()URce:}DIGital:DATAn:WORD:HANDshake:i)ELay? queries for the delay
time between data output and the control line for data output at 16-bit port n

[SOURce:] DIGital: DATA#:LWORdA:HANDshake:DELay? queries for the delay
between data output and the control line for data output at the 32-bit port.

None
¢ :DATAn] :type]:HANDshake is the sequence used for commands

relating to data handshaking at ports defined by n. The port number
7 must be next to the last character of the :DATA without spaces.

[SOURce:] DIGital:HANDshaken:DELay < fime> sets the time between data
valid and the assertion of the control line to TRUE for port n. This form of the
command operates on 8-bit ports only.

Parameter Parameter Range of Default
Name Type Values Units
HANDshake Numeric 0,1,2,0r3 None

< time> Numeric 2usto 15 us Seconds

20usto 150 us
200usto 1.5 ms
2ms to 15ms

» :HANDshaker is the keyword used for commands relating to data
handshaking at port n. The port number » must be next (o the last
character of the keyword without spaces.

* DIGital:HANDshaken NONE command sets the delayto 0. For all
other modes of handshaking 2 us is the minimum.

¢ Bands of delay settings are not allowed. These are:
15usto2.0us
150 us to 200 us
1.5ms to 20 ms

The controller places closest rounded-up value in the parameter
field if these values are specified.

* Related commands:
[SOURce:| DIGital: HANDshakern| :MODE]
[SOURce:] DIGital: CONTroln:POLarity
[SOURce:] DIGital: CONTroln[:VALue]
[SOURce:] DIGital:FLAG#:POLarity

o *RST Condition: Delayis set to 2 us.

Quad 8-bit Digital I/O Module Command Reference 5-25

DiGital:HANDshaken :DELay? DiIGital: DATAN{:type] :HANDshake[:MODE] <« mode>

Example DIiG:HAND3:DEL .005 sets the delay between the data output and the
assertion of the controi line to true on &-bit port 3 to 5 ms.

DIGital:HANDshaken [SOURce:] DIGital:HANDshaken:DELay? queries for the time between data
Y
;DELay? valid and the assertion of the control line to TRUE. This form of the command
operates only on 8-bit ports.

Parameters None

Comments ¢ :HANDshaken is the keyword used for commands relating to data
handshaking at 8-bit port #n. The port number n must be next to the
last character of the keyword without spaces.

Example DIG:HANDO:DEL? queries the delay time between data valid and the assertion
of the control line to TRUE on 8-bit port 0.

DiGital:DATAN[:type] [SOURce:] DIGital:DATAA[:BYTE] :HANDshake| :MODE] < mode> selects
‘HAN Dshake[:M ODE] the type of bandshake mode and defines the timing relationship between the
< mode> control {(CTL) line, the flag (FL.G) line, and when data is transferred in either
direction between the Digital /0 Module and a peripheral on 8-bit portn, All
handshakes are initiated by execution of a DIG:DAT AR or MEASDATAR?
command.

[SOURee:] DIGital:DATA7:WORD:HANDshake[:MODE] < mode> selects
the bandshake mode used on the 16-bit port n.

[SOURce:] DIGital:DATAnLWORA:HANDs hake| MODE] < mode> selects
the handshake mode used on the 32-bit port.

Parameters Parameter Parameter Range of Default
Name Type Values Units
DATA Numeric BYTE none,0,1,2,0r3 t]
WORD none, 0, or 2
LWORd noneor0
< mode> Discrete NONE, LEADing, Seconds
TR Ailing, PULSe
PARTial, or STRobe
Comments * :DATA[:type] HANDshaken is the sequence used for commands

relating to data handshaking at port 2. The port number n must be
next to the last character of :DATA without spaces.

» NONE deletes all automatic data handshaking between the Digital
1/0 Module and the peripheral. For custom handshaking, the
control and the flag lines are controlied by the DIGital:CONTroln
and DIGHalFLAGn commands.

5-26 Quad 8-bit Digital I/0O Module Command Reference

DiGital: HANDshaken [:MODE] < mode> DiGital:HANDshaken

Example

PiGital:HANDshaken
[:MODE]< mode>

Parameters

Comments

Exampie

DiGital:HANDshaken

Parameters

+ Related commands:
[SOURce:| DIGital:HANDshakern:DELay]
{ SOURce:] DIGital: CONTroln:PCLarity
[SOURce:] DIGital: CONTroln[:VALue]
{SOURce:] DIGital:FLAGr:POLarity

¢ *RST Condition: Mode is NONE on all ports.

DIG:HAND3 LEAD sets the handshake mode to LEADing on port 3.

[SOURce:] DIGital:HANDshaken [(MODE] < mode> selects the type of
handshake mode and defines the timing relationship between the controi (CTL)
ling, the flag (FL.G) line, and when data is transferred in either direction
between the Digital /O Module and a peripheral on 8-bit port 2. All
handshakes are initiated by execution of a DIG:DATA or MEAS:DATAnR?
command. This form of the HANDshake command operates only on 8-bit ports.

Parameter Parameter Range of Default
Name Type Values Units
HANDshake Numeric None, 0, 1,2,0r3 0
< mode> Discrete NONE, LEADing, Seconds
TR Ailing, PULSe
PARTial, or STRobe

¢ :HANDshaken is the keyword used for commands relating to data
handshaking at port n. The 8-bit port number £ must be next to the
last character of the keyword without spaces.

+ NONE deletes all antomatic data handshaking between the Digital
I/O Module and the peripheral. For custom handshaking, the
control and the flag lines are controiled by the D1Gital: CONTroln
and DIGitakFLAGn commands.

¢ Related commands:
[SOURce:] DIGital:HANDshaken:DELay]
[SOURce:} DIGital:CONTroln:POLarity
[SOURce:] DIGital:CONTroln[: VALue)
[SOURce:] DIGital:FLAGn:POLarity

s *RST Condition: Mode is NONE on all ports.

DIG:HAND3 LEAD sets the handshake mode to LEADing on port 3.

[SOURce:] DIGital:HANDshaken queries for the current handshake mode of
8-bit port #. This form of the HANDshake command operates only on 8-bit
ports.

None

Quad 8-bit Digital i/0 Module Command Reference 5-27

SYSTem:ERRer?

Comments

SYSTem Subsystem
Syntax

SYSTem:ERRor?

Example

SYSTem:VERSion?

Comments

SYSTem:VERSion?

¢ :HANDshakern is the keyword used for commands relating to data
handshaking at port #. The port pumber n must be next to the last
character of the keyword without spaces.

The SY STem subsystem reports the status of the error registers.

SYSTem
:ERRor? ‘VERsion?

SYSTem:ERRor? gueries the error register for the error value and returns an
error message to identify the error type.

e Related Commands:
*ERR

e *RST Condition: NONE

SYST:ERR? queries the mainframe for errors.

SYSFem:VERsion? Returns the SCPI version to which this instrument complies.

s The returned information is in the format: YYYY.R; where YYYY is
the year, and R is the revision number within that year.

5-28 Quad 8-bit Digital {/O Moduie Command Reference

E1330A Digital I/C Module

{EEE 488.2 Common Commarnis

IEEE 488.2 The following table lists the IEEE 488.2 Common (*) Commands that can be
Common executed by the Quad 8-bit Digital /O Module. For more information on
Common Commands, refer to the HP 75000 Series B Mainframe (HP Model
Commands Number E1300/E 1301) User’s Manual or the ANSIVIEEE Standard 488.2-1987.
Note

These commands apply to many instruments and are not documented in detail
here. See the HP 75000 Series B E130(/E 1301 Mainframe User’s Manual or the
ANSUIEEE Standard 488.2-1987 for more information.

Command Title Description

*[DN? identification Returns identification string of the Digital I/O Module

*RST Reset Sets all ports to input mode. Sets handshake to NONE.
Sets Polarity to POS.

*TST? Self-Test Always returns 0.

*OPpC Operation Complete See note below

*QPC? Operation Complete Query See note below

*WAI Wait to Complete See note below

*CLS Clear status Clears ail status registers

*ESE Event status enable See note below

*ESE? Event status enable query See note below

*ESR? Event status register query See note below

*SRE Service request enable Enables status register bits

*SRE? Service request enable query See note below

*STR? Read status byte query See note below

*TRG Trigger See note below

*RCL Recall instrument state See note below

*SAV Store instrument state See note below

*EMC

*EMC?

*RMC

*LMC?

*DMC Define macro Defines a macro

*GMC?

*PMC Purge macros Purges all system macros

Using the Quad 8-bit Digital I/O Module 5-29

E1330A Digital I/O Module Command Quick Reference

Command Quick

Reference

Command Parameter Description

DISPlay:MONitor{ :STATe] < O lorOFFI ON> Turns the monitor mode of the display on.

DISPlay:MONitor:PORTn < numberl AUTO> Turns the monitor mode on for the specified port.

DISPlay:MONitor:PORT?n {MINI MAX!I DEF] Returns the monitored port number.

DISPlay:MONitor:STRing? < string> Returns the string which appears on the
mainframe front panel.

MEASure:DIGital:DATAn| :type] ? < number> Reads selected 8-, 16-, or 32-bit port after
completion of handshake. Assames decimal
format of input data.

MEASure:DIGital:DATAxn| :type] < number> and Reads selected bit on selected 8-, 16-, or 32-bit

B Tm? < pumber> port after completion of handshake.

MEASure:DIGital:DATAn[:type] < number> and Reads selected 8-, 16-, or 32-bit port after

TRACe< name> < string> completion of handshake and and stores block.

MEASure:DIGital:FLAGA? < POSor NEG> Reads FLAG line on selected port. Returns O or
1. Used to implement custom handshakes.

MEMory:DELete:MACRo< name> |< string> Deletes a macro

MEMory:VME:ADDRess < address> |< number or MIN or Sets the address for additional VME system

MAX> memory.

MEMory:YME:ADDRess? [MIN or MAX] Returns the current add-on VME memory
address.

MEMory:YME:SIZE< size> < number> Sets the size of the add-on VME memory to be
used for the D10 card.

MEMory:VME:SIZE? Returns the current size of the add-on VME
memory assigned to the DIO module.

MEMory:VME:STATe< state> < Qorl, Sets the state {ON or OFF) of the assigned VME

ON or OFF> memory. When this is OFF, all memory

commands refer to the base system memory.

MEMoery:YME:STATe? Returns the current state {ON or OFF) of the
add-on VME memory.

5-30 Using the Quad 8-bit Digital /O Module

E1330A Digital /C Module

Command Quick Reference

HANDshake:DELay < time>

[SOURce:] DIGital:DATAnR| stype]
HANDshake:DELay?

[SOURce:] DIGital:DATAn] :type]
HANDshake{ :MODE]

{SOURce:] DIGital:DATAn[:type]
HANDshake[:MODE]?

NONe, LEADing,
TRailing, PULSe,
PARTial,STRobe

Command Parameter Description

[SOURce:] DIGital: TRACe:CATalog Lists the currently defined memory blocks.

{ SOURce:] DIGital:TRACe] DATA] < string> and Writes a block of data to a previously defined

< name> < block_data> < string> memory block.

{SOURce:] DIGital: TRACe[:DATA]? < string> Reads a block of data from a previously

< name> defined memory block.

{SOURce: | PIGital: TRACe:DEFine < string> and Defines a memor block and fills it with the

< name> < size> < fill> < number> and specified fill.

< number>

[SOURce:] DIGital:TRACe:DEFine? < string> Returns the size in bytes of a previously

< name> defined block of data.

ISOURce] :DIGital: TRACe:DELete< name> < string> Deletes the specified memory block.

[SOURce]:DIGital: TRACe:DELete ALL Deletes all memory blocks.

[SOURce}l:DIGital: CONTroln:POLarity < number> and POS= 1 for TTL high voltage;

< polarity> < POS or NEG> NEG = 1 for TTL low voltage.

{ SOURCce]:DIGital:CONTroln:POLarity? Returns POS or NEG.

{SOURce:] DIGital: CONTroln| :VALue] < numeric> Sets or clears control line on selected port.
Command used to create custom handshakes
when HANDshake is set to NONE

[SOURce:] DIGital:DATAn:| :type} < pumber> and Writes data to selected port when port 1s

[:VALuel < value> < number> ready to start a new handshake. Data can be
binary, octal, decimal, or hexadecimal.

[SOURce:] DIGital:DATAn] :type] < number> and Sets or clears selected bit on selected port

BITm< value> < number> when port is ready to start a new handshake.

[SOURce:| DIGital:DATAn] :type] < number> and Writes the named block of data to the

:TRACe < name> < S§ring> specified port whenever the port is in ready
state to start a new handshake.

[SOURce:] DIGital:DATAnR] :type] < number> Sets delay between data output and assertion

of control line for data output. Also sets
strobe pulse for both output and input
STROBE handshake.

Retwurns handshake delay time for selecterd
port.

Selects type of handshake to transfer data
between the selected port and peripheral. All
handshakes are mitiated by execution of a
DIG:DATAn or MEAS:DATAn? command.

Returns NONE, LEAD, TR A, PULS,
PART, or STR to show handshake type for
the selected port.

Using the Quad 8-bit Digitat IO Medule 5-31

E1330A Digital /O Module

Command Quick Reference

[SOURce] :DIGital:HANDshaken[:MODE]

[SOURce]:DIGitalHANDshaken[:MODE]?

SYStem:ERRor?

Command Parameter Description
[SOURce:| DIGital:DATA#| :type] :POLarity < POS or NEG> POS= 1 for TTL high voltage.
NEG= 1 for TTL low voltage.

| SOURce: | DIGital:DATAn[:type] :POLarity? Returns POS or NEG.
[SOURce] :MGital:FLAGn < number> Controls interpretation of flag line.
POLarity< polarity> <Qorl, POS= 1 for TTL high voltage;

OFF or ON> NEG = for TTL low voltage.
{ SOURce]:DIGital:FL.AGn:POLarity? < number> Returns POS or NEG.
[SOURCce]:DIGital:HANDshaken:DELay < number> Sets delay between data output and assertion

< NONE, LEADing,
TR Ailing, PUL.Se,
PARTial, STRobe>

of control line for data output. Also sets
strobe pulse for both output and input
STROBE handshake.

Selects type of handshake to transfer data
between selected portand peripberal. All
handshakes are initiated by execution of
DIG:DATAn or MEAS:DATAn? command

Returns NONE, LEAD, TR A, PULS,
PART, or STR.

Returns the contents of the system error
register

5-32 Using the Quad 8-bit Digital I/O Moduie

A

Specification

Logic Levels:
TTL Compatible, 5V max

Data Lines:

fout (High): -5.2 mA

@ Vout (High): 2.5V
(Pullup Enabled)

Iout (Low): 48 mA

@ Vout(Low): O3V

Vin (High): > 2.0V; < 50V

Vin {Low): < 0.8V

Iin (High): < 2.5mA @ 25V

Iin{Low): <« -32mA @ 04V

Handshake Lines:
Tout (High): 250 uA
@ Vout (High): 3V
lout (Low): 40 mA

@ Vout (Low): 0.7V
Iout (Low): 16 mA
@ Vout (Low): 04V
Vin (High);> 20V
Vin (Low); < 0.8V
Iin (Low): < LL75 mA

Modutie Size/Device Type:
B, register-based

Connectors Used: Pl
Nuomber of Slots: 1

VXIbus Interface Capability:

Slave, interrupter, A16, D16, DOSEO

Interrupt Level: 1-7, selectable

Power Requirements:

Voltage: + 5V

Peak module current, IPM (A): 0.50
Dynamic module current, IDM (A): 0.01

Watts/Slot: 2.5

Cooling/Slot:
0.04 mm H0 @ (.21 liter/sec

Humidity: 65%, 0 to 40°C

Operating Temperature:
Oto 55°C

Storage Temperature:
-4010 75°C

EMC, R¥1, Safety:
meets FTZ 1046/1984, CSA 5568, IEC 348, UL 1244

Net Weight (kg): 1.0

Specification A-1

A-2 Specification

B

Quad 8-bit Digital I/O0 Module Register
Information

Using this Appendix
The contents of this appendix are:
¢ Addressingthe Registers............ oLl page B-1
e Resetand Registers i i page B-4
e Register Definifions. i i page B-3
e Register Description i page B-5
e A Register-Based Output Algorithm. page B-14
o A Register-Based Input Algorithm o L. page B-15
e Programming Examples oot page B-16

Addressing the Registers

To access a specific register for either read or write operations, the address
of the register must be used. Register addresses for the plug-in modules are
found in an address space known as VXI A16. The exact location of A16
within a VXIbus master’s memory map depends on the design of the the
VXIbus master you are using; for the HP E130{0/1301 Mainframe and HP
E1405/E1406 Command Module, the A16 space location starts at 1F0000h.

The A16 space is further divided so that the modules are addressed only at
locations above 1FCO0Ch within A16. Further, every module is allocated 64
register addresses (40h). The address of a module is determined by its
Togical address (set by the address switches on the module) times 64 (40h).
In the case of the Digital 1/0 module, the factory setting is 144 or 90h, so
the addresses start at 1FE400h

Register addresses for register-based devices are located in the upper 25%
of VXI Al16 address space. Every VXI device (up to 256) is allocated a 64
byte block of addresses.

Figure B-1 shows the register address location within A16, Figure B-2
shows the location of A16 address space in the HP E1405 Command
Module,

Register B-1

FEEF g
. T
\ At h-HT WORDS
000 : FEEE / Ceh-I3n Prrt Hormalizotion
i r e
s y £ /! {Ch-ifh | Fort Delcy
| / 180 - 1Bn ol Hondshiake
A 14h-17h | Port Dala
AiE \ BEGISTER / iGh-t3h | Conlrol Slotus
A@D-RE%S ADDDRESS / OCh-0Fh | Transfer Contrnt
SPAC& \ SPACE+ 08h~0Bk | interrupt Control Regisler
i o o
o o
CO00y g - o o
(48.152) ~ G4h Card/Slatus/Control Register
Qin Device Type Register
. G
~._| COh i3 Register
MHP E1330
Register Maop
G000 g
+ Bose Address = CO00,.+ {loglcal cddress + 64},
ar
49.1%2 + (iogical oddress » 644
e . o Eaiera g
Register Address = Bose Address + Regisler Offset £13304 FIGE-1
Figure B-1. Register Address Location Within A16
E14054
ADDRESS MaP
FFFFFF,
TH-8If WORDS
Part Nermaization
200000, / 1Ch-1En | Port Delgy
ECGO00, s 180~ 180 Port Hongshake
IFCO00 200000, s 14n-17h | Part Dole
/ e s I / 10k—13h Centtol Stotus
! AlE i GCh-0Fh | Transler Control
A4 | ; . ! REGISTER :
ADDRESS / % Aggig;"i’ \ i ADDRESS / 08h-0Bn | interrupt Contrel Regisier
SPACE / - \ J SPACES / T R
!
i — o Q
/:‘ \\ . @ s
i 1F0000 ;¢ {Zlgggqf%g) ~ G4n Coedxaiwemsfflan.vul Register
I . a2t Device Yype Register
2050040, ¢ p il 15 Fegsier
IFOCOG, 5 HP E1330
Register Map
06000, ¢l
v Base &ddress = IWWCOO00,, + (logical address « 84}
or
2,080,768 + {iogical address v 64}, ci338A riome2
Feqisier Adoress = Bose Address ~+ Regisier Offser

Figure B-2. A16 Address Space in the HP E1405A

B-2 Register

The Base Address

A16 Address Space
Outside the Command
Module

A16 Address Space
Inside the Command
Module or Mainframe

Register Offset

When you are reading or writing to a module register, a hexadecimal or
decimal register address is specified. This address consists of a base address
plus a register offset. The base address used in register-based programming
depends on whether the A16 address space is outside or inside the HP
E1405 Command Module.

When the HP E1405 Command Module is not part of your VXIbus system
(Figure B-1), the E1330’s base address is computed as:

Al16pase + CO00R + (LADDR * 64)n

or {decimal)

Al ﬁbase + 49,352 + (LADDR ¥ 64)
where CO00h (49,152) is the starting location of the register addresses,
LADDR is the module’s logical address, and 64 is the number of address

hytes per VXI device. For example, the E1330s factory set logical address
is 144 (90h), therefore it will have a base address of:

Al16pase + COO0h + (144 * 84)h = CO00h + 2400h = E400h

or {decimal)

A1Bpase + 49,152 + (144 * 64) = 49,152 + 9216 = 58368

When the A16 address space is inside the HP E1405 Command Module
(Figure B-2), the module’s base address is computed as;

1FC000h + (LADDR * 64)h

or
2,080,768 + (LADDR * 64)

where 1IFCO00h (2,080,768) is the starting location of the VXI A16
addresses, LADDR is the module’s logical address, and 64 is the number of
address byles per register-based device, Again, the E1330’s factory set
logical address is 144. If this address is not changed, the module wiil have a
base address of:

1FCO0Ch + (144 * 64)h = 1FC0O00h + 2400h = 1FE400h

or

2,080,768 + (144 " 64) = 2,080,768 + 9216 = 2,089,984

The register offset is the register’s location in the block of 64 address bytes
that belong to the module. For example, the module’s Status/Control
Register has an offset of 04h. When you write a command to this register,
the offset is added to the base address to form the register address:

E400h + 04h = E404h 1FE400h + 04h = 1FE404h

or
58,368 + 4 = 58,372 2,085,084 + 4 = 2,089,988

Register B-3

Table B-1 shows the general programming method for accessing the HP
E1330 registers using different computers.

Computer Programming Method Base Address

E1300/E1301 IBASIC

{Absolute Addressing) READIO (-9826, Base_addr + offsat) Base_addr = 1fc0004 + (LADDR * 64)16
WRITEIQ -9828, Base_addr + offset; data or
= 2,080,768 + (LADDR *64)

(positive select code = byte read or write cffset = register number
negative select code = word read or write}
Base_addr = LADDR * 258

Select Code B) READIO (8, Base_addr + reg number) reg number = offset
WRITEIO 8, Base_addr + reg number; data

External Computer VXI:READ? logical_addrress, offset Module Logical Address setting {(LADDR}
VXI:WRITE logical_address, offset, data offset = register number
over HP-IB to
1300/E1301 Base_addr = 1FC000+1s + (LADDR * 64)s
Mainframe or E1405 or
Command Module) DIAG:PEEK? Base_addr + offset, width = 2,080,768 + (LLADDR * 84)
DIAG:POKE Base_addr +offset, width, data offset = register number
V360 Embedded READIO {-16, Base_addr + ofiset) Base_addr = C000+s + (LADDR * 64)1s
Computer WRITEIO 168, Base_addr + offset; data or
(C-Size system) = 49,152 + (LADDR * 64)
{positive select cade = byte read or write offset = register number

negative select code = word read or write)

LADDR = E1330 Logical Address = 144
{LADDA ~ 84)16 = multiply quantity then convert to hexadecimal number {e.g. (80 * 84)1s = {960)15 = 140046
When using DAIG:PEEK? and DIAG:POKE, the width must be either 8 or 16.

Reset and Registers

When the Digital I/O Module undergoes a hardware reset { *RST in SCPI),
the bits of the registers are put into the following states:

s The identification bytes at address 00 through 03, the Manufacturer
ID and Device ID, remain unaffected.

e The I/O bits (bit 6 of the Port Control/Status Registers(0-3)) are set
to “1", enabling all four ports for input.

All other bits of all registers are set to 0",

B-4 Register

Register Definitions

You can program the HP E1330A Quad 8-bit Digital I/O Module using its
hardware registers. The procedures for reading or writing to a register
depend on vour operating svstem and programming language. Whatever the
access method, you will need to identify each register with its address.
These addresses are given in Table B - 2.

Table B-2. Register Map

Register Name Address
Manufacturer |D {MSB) 00h
Manutacturer ID {LSB) 01h
Device ID (MSB) 02h
Device ID (LSB) 03h
Card /Status/Control (MSB) 04h
Card/Status/Control (LSB) 05h
Address
Register Name Port 0 Port 1 Port 2 Port3
Port Interrupt Control 08h 09h OAh 0Bh
Port Transter Control CCh 0Dh QEh OFh
Port Control/Status 10h 11h 12h 13h
Port Data 14h 15h 16h 17h
Port Handshake 18h 18h 1Ah 1Bh
Fort Delay 1Ch 10h 1Eh 1Fh
Port Normalization 20h 21h 22h 23h

The module is a register-based slave/interrupter device, supporting VME
D16, D8(0), and D8(OE) transfers. The interrupt protocol supported is
“release on Register access” — an interrupt is cleared only by servicing the
cause of the interrupt (generally by reading or writing a byte of data).
Interrupts are not cleared by a VXIbus interrupt acknowledge cycle.

Register Descriptions

Manufacturer
ldentification Register

Device ldentification
Register

The following pages detail register descriptions of the Digital I/O Module.

The Manufacturer Identification Register is a read-only register at address
00h {(Most Significant Byte (MSB)} and O1h (Least Significant Byte (LSB)).
Reading this register returns the Hewlett-Packard identification, FFEFh.

The Device Identification Register is a read-only register accessed at
address 02h. Reading this register returns the Digital I/O Module
identification of 50h for the E1330A or 51h for the E1330B. Reading
address 03h always returns Frh.

Register B-5

Card Status/Control The Card Status/Control Register is a read/write register accessed at address
Register 04hand 05h. The following table shows the register bit patterns.

Address b+ 05h Address b+04h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 ¢

1 1 1 1 3 12 It 0 1 IEN| 1 1 1 1 1 5R

SR{soft reset) Writing a **1" and then a 0" to this bit resets all Digital
1/0 Module components. SR disables all output ports (all ports become
input ports) and sets all other registers to defauit values, Reads and writes
to the other module registers will not transfer valid data when SR is
asserted. This bit is cleared by a hard reset,

TIEN: Main interrupt enable. Writing a 1 to this bit allows interrupts from
port controller ICs to assert interrupt on the VXIbus. Writing a O masks
these interrupts. This bit is cleared by a hard reset, but not by a soft reset.

Caution
A potential race condition exists when clearing this bit or masking interrupts
by means of register 08h through OBh. If an interrupt occurs just before
interrupts are masked, it could be asserted on the VXIbus but not
acknowledged by the Digital I/O Module. Therefore, use care in disabling
interrupts once they have been enabled.

1(0-3): Interrupt FlLags for ports (0-3) (0 = interrupt). The MSB of this
register is the module’s interrupt response vector. It is asserted on the
VXTIbus during an interrupt acknowledge cycle.

Port Interrupt Control The Port Interrupt Control Register is a read/write register and functions as
Register the interrupt register for the port. This register shows the interrupt enable
status, the level of interrupt that can signal the controller {always set to 0),
and whether an interrupt is pending.

Port Address (0-3) b+08h,b+08h,b+0Ah,b+0Bh
7 8 5 4 3 2 1 0
PIEN]| 1P Lt PO | e] e | —] —

Bits (0-3): unused.

I1.0 and 111 (Interrupt Level): Both bits must be left at O to initialize the
Digitat IO Module for interrupt operation.

IP (Interrupt pending): when equal to 1", indicates an interrupt is pending.
This is a read/write bit. You can force a hardware interrupt by setting this
bit to 1" if PIEN is set to ‘1" and IEN is set to *1" in the Status/Control
register.

B-6 Register

Port Transfer
Control Register

PIEN (Port Interrupt enable) : when set to *‘1”, enables interrupt. Pending or
forced interrupts are ignored if set to ’Q".

ONE OF FOUR
A —

P {wiite) ——tp
(PHEN]

¥ {write} =g N n

|

5

| N

1‘ e - r) ""WD"“ e st
l

E

|

3

1

\

mgjﬁ&w] ! o I> ’ i
o | |

vt s s i o ninn o o e e | s e e e e]
Fram 3 Othes Dum{
[
ECHEN
(3L RN

Figure B-3. Interrupt Line Logic Diagram

The Port Transfer Control Register controls transfers between the
mainframe and port, identifies port interrupts, and identifies forced
interrupts from the controller.

Port Address {0-3)b+0Ch, b+0Dh, b+0Eh, b+0Fh
7 8 5 4 3 2 1 0
P Fi Ti e o — HE DDR

DRR (Data Register Ready): a read-only bit. When set to “1" it indicates
either that the Port Data Register contains valid data for the mainframe to
read, or that the Port Data Register is ready for the mainframe to write a

byte of data to it. When the Port Data Register is read, DRR is set to 0",

HE (Handshake Enable): when set to ‘1", enables handshaking for the pott.
You can read from or write to this bit. When the registers have been
initialized, you can set this bit to "'1" to enable handshaking if you are using
the port handshake lines to transfer data.

Bits 2 - 4; not used.

TI (Transfer interrupt): this is a read-only bit. When set to *‘1", indicates a
port transfer has occurred. A port transfer interrupt, if enabled, occurs on a
'port data register ready” condition (when bit O of this register is set to
“0"}. To enable port transfer interrupts, specify the “interrupt driven”
transfer mode of port {refer to Port Handshake Register) and set the
“interrupt enable” bit (bit 7 of Interrupt Control Register) equal to “1".
When the Port Data Register is read, T1 is set to 70",

FI (Forced Interrupt): this is a read-only bit. When set to *‘1", indicates that
a forced interrupt (from the mainframe) has occurred. To force an interrupt,
write a 1" to bit 6 and bit 7 of the Port Interrupt Control Register and bit 6
of the status/control register,

Register B-7

Note

Port Control/Status

B-8 Register

Register

PI (Peripheral Interrupt). Bit 7 is a read/write bit. Writing a 1" to bit 7
enables port peripheral interrupts. Writing a ’0" disables port peripheral
interrupts. When reading bit 7, a “‘1" indicates a port interrupt has occurred.
When the Port Data Register is read, Pl is set to 70",

Port peripheral interrupts are caused by a transition in the PIR line. If bit 4
of the Port Normalization Register is “'0", a rising-edge (low o high)
transition caused the interrupt. If bit 4 is set to "'17, a falling-edge (high to
low) transition caused the interrupt. Refer to the Port Normalization
Register for more information.

The Port Control/Status Register shows the status of STS, PIR, and FLG
lines. It also directly controls the RES, /O and CTL lines.

Port Address (0-3) b+10h, b+11h, b+12h, b+13h
7 8 5 4 3 2 1 0

CcTL 3] RES | FLG | — —_ PIR sTS

STS: bit 0 is read-only bit. Read this bit to find the status of the STS line
which is an input from the peripheral for the port. A ‘1" shows that the line
is BUSY; a 0", shows that the line is READY.

PIR: bit 1 is a read-only bit. This bit shows the normalized state of the PIR
line which is an input line from the peripheral:

» If positive-true logic is in use (bit 4 of the Port Normalization
Register is equal to *0"), bit 1 is equal to O if the line is low; 71" if
the line is high.

« If the PIR line is inverted (bit 4 of the Port Normalization Register is
equal to '1"), bit 1 is equal to 0" if the line is high; **1" if the line ig
low.

If peripheral interrupts are not enabled, you can use the PIR line as a
secondary status line. Just read bit T to monitor the state of the line,

If peripheral interrupts are enabled, you can still monitor the status of the
PIR line by reading bit 1. However, the current status of the PIR line does
not indicate whether a peripheral interrupt has occurred. Port peripheral
interrupts are caused by transitions in the state of the PIR line. Read bit 7 of
the Port Transfer Control Register to determine whether a port peripheral
interrupt has occurred.

Bits 2 and 3: not used.

Note

FLG: this is a read-only bit. Read this bit to find the normalized status of
the FLG line. A *1" shows that the line is BUSY; a "'0" shows that the line
is READY. This bit shows the logical state (BUSY or READY) of the FL.G
line, regardless of the logic sense.

RES: this is a read/write bit. Reading this bit shows the current state of the
RES line which is an output line to the peripheral. A ‘1" shows that the line
is high; a "’0" shows that the line is low. Bit 5 is initially set to “0" by a
hardware reset of the interface. This causes the RES line to go low, resetting
the peripheral, if the peripheral implements the reset feature. You can
control the logical state of the RES line by writing to this bit. Set bit 5 equal
to ”’1" to change RES 1o the high state. The peripheral will then operate
normally, To reset the peripheral, clear bit 5 to ‘0", putting RES in the low
state.

1/0: this is a read/write bit. Read this bit to find the current status of the YO
line, which is an output line to the peripheral, and the port data transceiver.
If bit 6 is equal to “'0", the line is FALSE and the transceiver is enabled for
output. If bit 6 is equal to 1", the line is TRUE and the transceiver is
enabled for input. This bit is equal to *'1" (input) after a hardware reset.
You can select input or output by changing this bit.

If you are using the port handshake lines to control transfers, use the /O line
to controi the direction of data transfer to your peripheral. Make sure that
the peripheral is always enabied to send data during input transfers and to
receive data during output transfers.

CTL: this is a read/write bit. Read this bit to find the current normalized
state of the CTL line which is an output line to the peripheral. A

“1" shows the line is TRUE; a 0" shows the line is FALSE. When
handshaking is enabled (bit 1 of the Port Transfer Control Register is set),
the CTL line is controtled by the port controller. To prevent incorrect
handshaking due to interaction with other lines, before enabling
handshaking, set the control line to FALSE. If handshaking is not enabled
and the handshake mode is set to NONE, you can control the logical state of
the CTL line by writing to bit 7. This bit represents the logical state (TRUE
or FALSE) of the CTL line, regardless of the logic sense.

Register B-9

Port Data The Port Data Register is a read/write register. It is used for both output and
Register input. Its operation depends on the state of the I/0.

Port Address (0-3) b+14h, b+15h, b+16h, b+17h
7 8 5 4 3 2 1 0
D7 Dé D5 D4 D3 D2 D1 Do

o IfI/Ois set for output (bit 6, Port Transfer Control Register = *0"),
data written to the Port Data Register is latched and remains until
new data is written. The current data in the Port Data Register drives
the port data bus. If you read Port Data Register, the value read is the
value last written to the register,

o IfI/Ois set for input (bit 6, Port Transfer Control Register ="1"), the
data read from the Port Data Register is the data transmitted by the
peripheral on the port data bus. If you write to the Port Data
Register, the data is latched for output, but the data lines are not
affected until IO is again set for output.

» When the Port Data register is read the following bits are set to *0"
on the Port Transfer Control Register: DRR (bit 0), TT (bit 5), and PI
(bit 7).

Bits 0-7 of the Port Data Register correspond to data lines D(0-7) where bit
7 is the most significant bit,

Port Handshake The Port Handshake Register determines the type of handshake protocol
Register used for the port data transfers and how the data is transferred from the
Digital YO Module to the mainframe on the VXIbus.

Port Address (0-3) b+18h, b+19h, b+1Ah, b+1Bh
7 6 5 4 3 2 1 0
HT2 | HT1 | HTO | E — — ™1 | TMoO

TM(0,1)(Transfer Mode): These bits control the transfer mode for the port
between the Digital I/O module and the VXIbus as shown in Table B-3.

Table B-3. Transfer Mode

Transfer Mode ;}\ﬂ ;?fg
Flag Briven 0 0
Interrupt Driven 0 9
Fast Handshake 1 0

The three transfer modes are used to transfer data between the VXIbus and
the Digital I/O Module:

B-10 Register

Port Delay
Register

e Flag Driven — the mainframe polls the Data Register Ready bit (bit 0,
Port Transfer Control Register). When this bit is set, it reads data
from the Port Data Register or writes data to the Port Data Register.

 Interrupt Driven — the peripheral sets bit 1 of the Port Status/Control
Register and the Digital I/O Module interrupts the VXlbus for data
transfer with the mainframe.

« Fast Handshake - the peripheral talks directly with the VXIbus's
Data Acknowledge line to transfer data between the Port Data
Registers and the VXIbus.

Bits 2 and 3: not used.

EI (Enable Inhibit): This bit, if set to ‘1", enables the STS line to inhibit a
transfer cycle during a ransfer. If bit 4 is set, the transfer is inhibited when
the peripheral puts STS in the BUSY state and resumes when STS returns to
the READY state, '

HT(5-7)(Handshake Type): These bits determine the type of handshake for
port input and output transfers as shown in Table B-4.

Table B-4. Handshake Type

Qutput/input Transfer Bt 7 Bit6 Bits
No Handshake 0 0 o
Leading Edge 0 0 1
Traifing Edge 0 i 0
Pulse 0 1 1
Partial 1 0 0
Strobe 1 0 1

The Port Delay Register sets the delay time, Tq. Delay time is the time
between data valid and setting the control (CTL) line TRUE. It is used with
several handshake modes. You can also read this register to find the current
delay time.

Port Address (0-3) b+1Ch, b+1Dh, b+1Eh, b +1Fh
7 6 5 4 3 2 1 0
DF7 | DF6 | DF5 | DF4 | — — AM1 | AMO

RM(0,1)(Range Multiplier): You can specify the range of delay time, Tg, by
selecting the one of the range multipliers in Table B-5.

Register B-11

Note

Port Normalization

B-12 Register

Register

Tabie B-5. Range Muttipliers.

Range Multiplier E;T ; Erfg
1 ms 0 0
100us 0 1
10us 1 0
1us 1 1

Bits 2 and 3: not used.

DF(4-7T¥Delay Factor): Regardless of the range multiptier you select, you
can specify a delay factor in the range of 0 through 15 (decimal equivalent
of the binary vaiue) by setting these bits (0 specifies no delay time). For ail
output handshake types, the delay period Ty is equal to the range multiplier
times the delay factor specified by bits 4 - 7. For example, if you write the
value “00010000" to register 5, the multiplier is 1 ms and the delay factor is
1. If you write ”11110010" to register 5, then the multiplier is 10 us and the
delay factor is 15; hence, the delay factor is 150 us. The actual delay for a
given transfer may be one count longer due to uncertainty in recognizing a
transition of a handshake signal.

If you are using the output strobe or puise handshake, you can specify
delay factors in the range 2 through 15, or you can specify 0 (no delay
period). Thus, you can specify Td values from 2 to 15 us, from 20 to 150
us, and s¢ forth for these handshakes.

If you are using the input strobe handshake, the delay factor specified by
bits 4 through 7 is reduced by one, then multiplied by the range multiplier.
For example, the register value ““00100000" for an input strobe handshake
specifies Ta = 1 ms. (The multiplier is 1 ms and the delay factor is 2-1= 1.)
On the other hand, the value "'11110010" specifies Ta = 140 us. (The
multiplier is 10 us and the delay factor is 15-1=14.)

The input strobe handshake is the only inpur handshake that uses a delay
period. For the other input handshakes the value in this register has no effect.

The Port Normalization Register allows you to normalize the port
handshake and data lines to the correct logic sense for your peripheral.
Positive true logic is the default. You can invert a line by setting the
appropriate bit equal to *‘1",

Port Address (0-3) b+20h, b+21h, b+22h, b+23h
7 6 5 4 3 2 1 0
1o ICTL | IFLG | IPIR | — — — —

Bits 0 - 3: not used.

IPIR(Invert PIR): This bit specifies the logic sense of a peripheral interrupt
request. If bit4 = 0", a rising-edge (low to high) transition of the PIR line
triggers an interrupt. If bit4 = "1", a falling-edge (high to low) transition of
the PIR line triggers an interrupt. In either case, no interrupt occurs unless
peripheral interrupts are enabled,

IFLG{Invert FLG): This bit specifies the logic sense of the FLG line. If bit
5= 0", then positive-true logic is used: HIGH = BUSY, LOW = READY.
IF bit 5 = ""1", then negative-true logic is used: LOW = BUSY, HIGH =
READY.

ICTL(Invert CTL}: This bit specifies the logic sense of the CTL line. If bit
6 = “0", then positive-true logic is used: HIGH = TRUE, LOW = FALSE.
IF bit 6 = **1", then negative-true logic is used: LOW = TRUE, HIGH =
FALSE.

ID(Invert DATA): This bit specifies the logic sense of the port data lines. If
bit 7 = “0", then positive-true logic is used: HIGH = TRUE, LOW =
FALSE. If bit 7 =""1", then negative-true logic is used: LOW = TRUE,
HIGH = FALSE.

Register B-13

A Register-Based
Output Algorithm

The following algorithm describes the procedure you would use to program
the registers to transmit a byte of data to a peripheral. The algorithm
follows a flag-driven output procedure initiated by the computer. The
computer polls the Digital I/O Module to see if the data has been accepted
by the peripheral by checking the Port Transfer/Control Register, bit 0
(referred to as the acknowledge flag - hence, the name of flag-driven).

Once the flag is TRUE the computer can output new data to the port. The
actual path followed by the peripheral and the Digital I/O Module to set this
bit is controlled by the handshake mode you select.

Sef Port Rondshcke Mode
Bit 7 Bt & BN

H

Mo Hondshoke O []
Leading Ldga 0 [1
Treiling Edge 2 5 o
Pulse 0 t 1
Poriia T [o

1 o 1

SHroba

Set Port (eigy Time

Rangas, Bt 1 Bt 0

ims 0 o
100us O i
10us 1 1]
Tus 1 5

Delay Factora pecimal wolue of Bits 4.5.8, and ?

% Sef Port Mormelization Polarily

! Hit 7 lnvert Dato =it bit = 0 then HGH=TRUE
#oblt = ! then LOW=TRUE

I it 8 fnvert CYL= U Bit = O then HIGH=IRUE

T

%

L

if hit t then LOW=TRUE
Bit S favert FLG — I bit = 0 then HIGH=BUSY, LOW=READY
i bif =
Bit 4 invert P — If bit = O then rising edge triggers interrust
i# b = 1 then folling sdge triggers Inferupt

T then LOW=BUSY, HIGH=READY

|

l Set Bit & of the Port Sigtus/Conirel Register 1o & to srabis output ?

$

Set ot | of thg Port Transfar Conirol Regisier 1o ! jo start the dale i

Transfor Handshoke

I WrHa the Dota fo the Uota Fort Register ﬁ

Lheoic Bil § of the Porl Tronsfer Control Regisier for o TRUE Siate
indicaling thol dolo wox accepled from peripherol ond handshake

<cempletq,
Yes A)re
Data?
No

H
¢

Disoble Handsheka by setling bit t fo Port Tronsfer Contral Regisler to §
¥

£31330A QA

B-14 Register

A Register-Based
Input Algorithm

The following algorithm describes the procedure you use to program the
registers to read a byte of data from a peripheral. The algorithm follows a
flag-driven input procedure initiated by the computer. The computer polls
the Digital I/O Module to see if the data has been transmitted by the
peripheral by checking the Port Transfer/Control Register, bit 0 (referred to
as the acknowledge flag - hence, the name flag-driven). Once the flag is
TRUE the computer can read new data from the port. The actual path
followed by the peripheral and the Digital YO Module to set this bit is
controlled by the handshake mode vou select,

Sot Fort Handshoke Wode
gir7 B 6 Bt S
o

No Handshoke 0
Lesding Edgs 0
Trefiing Edge g
Putse o
Pariict !

i

1
1
g
Strebe 1]

Set Fort Delay Tline
Range Mut. Bit 1 Bit ¢

ims 0
00us O 1
tWus 1 [
tus 1

DoléxFipdier wDeacimal voiue of Bils 456, und 7

Sai Port Normalization Palarity

Bit 7 lavert Date - if bit = O then HGH=IRUE
I 8t = 1 then LOW=TRUE

81 & tovert CTL- ¢ bit = 0 then HIGH=TRUL
if it = % then LOW=TRUE

B8 3 dnvert FLG - 3 bil = O fhen HIGH=BUSY, LOW=RIAGY
i oit = t fhen LOW=BUSY, HIGH=RIADY

B 4 iovert PIR ~ if bit = { then rising edge friggers inferrupt
i bit = % then falling edge triggers inferupt

Set Bit 5 of the Port Status/Coatrel Registar e ! 1o starl the deta

!

Set ot 1 of ihe Port Trensfer Control Register to | to start the date
Transter Hendshoke

Check 8it O of the Port Tronster Control Reglster for o TRUE Stote
indicating that dola was accepted from peripheral and hondshake
complete,

Y

Reud the Deta to the Data Port Register E

Yoz More
Data?,

-

Dischie Hendshake by sefting blt 1 fo Port Trgnster [onirot Ragister to U §

©

Register B-15

Programming Examples

The examples in this section demonstrate how to program the module at the
register level. The programs follow the execution and timing models
covered in the previous section. The examples in this section include:

Resetting the module

Reading the ID, Device Type, and Status Registers
Writing an §-bit Byte

Writing a 16-bit Word

Reading an 8-bit Byte

Reading a 16-bit word

PIR Interrupts

Controlling the FL.G, CTL, STS, RES, and PIR lines

® & & % e » » »

System Configuration The following example programs were developed with the module at logical
address 144, The HP BASIC/UX programs were developed using the HP
E1300 mainframe Series B HP BASIC language. The C language programs
were developed on an HP Vectra PC (IBM PC compatible) using Borland’s
Turbo C++® programming language.

Resetting the module The following program resets the E1330 Digital YO Module (Bit 6 of the
Port Control/Status register set to “1" then to "’0"). Reset enables all four
ports for input, all other bits of other registers set to “0").

HP IBASIC Version
10 Base_addr = DVAL("1FE400",16) ILogical Address 144
20 Reg_addr = 04 ! Offset for Status Control Register
30 write a O then a I to bit 0 of starus register
40 WRITEIO 9826, Base_addr + Reg_addr; 1
50 WRITEIO 9826, Base_addr + Reg_addr; 0
60 END

B-16 Register

C Version #include <stdio.h>

#include <chpib.h>

#define LOG_ADDR 144
#define BASE_ADDR (long) ((0x1FC000) + (64 * LOG_ADDR))

main {)
{
int reg_addr;
float send_data[3];
char state[2] = {13.10};
send_data[0] = BASE_ADDR + reg_addr;
send_data[1] = 16;
send_datal2] = 1;

IOEQ! (7L, 0); IOEOL (7L, “",0);
IOOUTPUTS (70900L, “DIAG:POKE ”,10);

IOEOI (7L, 1); IOEOL (7L, * state,0);
IOOUTPUTA (70900L, send_data, 3);

send_data[2] = 0;

IOEOI (7L, 0); 10EOL (7L, “",0);
IOOUTPUTS (70900L, “DIAG:POKE ",10);

IOEQI (7L, 1); 1OEOL (7L, “ state,0);
IOOUTPUTA (70900L, send_data, 3);

retumn 0;

}

Register B-17

Reading the ID, Device The following examples read the module ID, DEVICE ID, and STATUS
Type, and Status registers from the module.
Registers

HP IBASIC Version L o] Aot dodotich bttt bl bbb bbbt obdhotobelotodolebelel

00 [reees READREG —
o
40 ! OPTION BASE 0 is default

50t Set up arrays to store register names and addresses
60 DIM Reg_name${0:2)[32], Reg, addr(0:2)

701

80 ! Read register names and addresses into the arrays
90 READ Reg_name$(")

100 READ Reg_adde(*")

1101}

120 | Set base Address variable

130 Base_addr = DVAL (*1FE400,16)

140!

150 Map the A16 address space

160!

170 ICONTROL 16,25;2 | used only with V360 Controller
180 ! Call the subprogram Read_regs

190 Read_regs(Base_addr, Reg_name$(*),Reg_addr(™))
2001

210 DATA Identification Register, Device Register, Status Register
220 DATA 00, 02, 04

230 END

300t This subprogram steps through a loop that reads each register
and prints its contents

310!

320 SUB Read_regs(Base_addr, Reg_name${*),Reg_addr(*))
330!

340 FOR Number =0 to 2

350 Register = READIO(-9826,Base_addr + Reg_addr{number})
360 PRINT Reg_name$(number);" = “; IVAL${Register, 16)

370 NEXT Number

380 SUBEND

This program returns:

Identification Register = FFFF
Device Register = FF50
Status Register = (dependent on current staius, default is FFBE)

B-18 Register

C Version

#include <stdio.h>

#include <chpib.h>
#include <cfunc.h>

#define LOG_ADDR 144
#define BASE_ADDR (icng) ((0x1FCO000} + (64 * LOG_ADDR))
main()
{ int reg_addr;
float send_data[3], read;
char state{2] = {13,10};

send_data[1] = 16;
send_data[2] = 0;
send_data[0] = BASE_ADDR + 0

IOEOI (7L, 0); IOEOL (7L, “”, 0);
IOOUTPUTS (70900L, “DIAG:PEEK? *, 11);

IOEQI (7L, 1); IOEOL (7L, state, 2);
IOOUTPUTA (70900L, send_data, 2);

IOENTER{70900L, &read);
printf("/nldentification Register = %0x" read),

send_data[0] = BASE_ADDR + 2;

IOEOI (7L, 0Y; IOEOL (7L, “, 0);
IOOUTPUTS (70900L, “DIAG:PEEK? ", 11);
IOEOI (7L, 1); IOEOL (7L, state, 2);
IOOUTPUTA (70900L, send_data, 2);

IOENTER(70900L, &read);
printf(*/nDevice Register = %0x”",read);

send_data[0] = BASE_ADDR + 4;

ICEQI (7L, 0); ICECL (7L, “ ", O);
IOCUTPUTS (70900L, “DIAG:PEEK? ", 11);
IOEO! (7L. 1); IOEOL (7L, state, 2);
IOOUTPUTA (70900L., send_data, 2);

IOENTER(70900L, &read);
printf{“/nStatus Register = %0x" read);
return o;

}

Register

B-19

Writing an 8-bit Byte Using the output algorithm described earlier, the following programs
describe how to output an §-bit byte to your peripheral device. The program
use a leading edge handshake and flag-driven data transfer to send data
{decimal value 255) from Port 1.

HP IBASIC Vesion
10 Base_addr = DVAL{"1FE400",16)
! Logical Address 144
20 WRITEIO 9826 Base_Addr+DVAL(*19",16);32

! Sets Port I Handshake Register to leading edge handshake and flag
driven transfer

30 WRITEIO 9826,Base_Addr+DVAL(*1D",16);00
! Sets Port 1 Delay Register to 0
40 WRITEIO 9826 .Base_Addr+DVAL(“21",16):00

! Sets Port 1 Normalization Register (polarity) to positive-true (High =
true)

50 WRITEIO 9826,Base_Addr+DVAL("11",16);0

! Sets Port 1 Status Control bit 6 to enable output
60 WRITEIO 9826 ,Base_Addr+DVAL(*0D",16);2

! Sets Port 1 Transfer Control Register bit 1 1o Enable Handshake
70 WRITEIO 9826 ,Base Addr+DVAL{*15",16);255

! Sets Port 1 Data Register to the value fo output
80 REPEAT
80 UNTIL BIT(READIO (9826,Base_addr+DVAL(“0D",16)),1)
100 ! If more data to send, repeat lines 70 - 90
110 WRITEIO 9826 ,Base_Addr+DVAL("0D”,16),0

! Clears Port 1 Transfer Control Register bit 1 to Disable Handshake
120 END

C Version
/¥ writing an 8-bit byte ¥/
#include <stdio.h>
#include <chpib.h>
#define LOG_ADDR 144
#define BASE_ADDR (long) ((0x1FCO000) + (64 * LOG_ADDRY))
void send_info(char state{], float send_datal));
main ()
{
float send_data{3], read;
char state[2] ={13,10};
int handshak_reg, delay_reg, normiz_reg,
statuscont_regq, transfercont_reg, data_reg;
handshak_reg = 0x19;
delay_reg = Ox1D;
normiz_reg = 0x21;
statuscont_reg = 0x11;
transferconi_reg = 0x0D;

B~-20 Register

return 0;

}

data_reqg = Ox15;
send_data[1] = 16;

send_data[0] = BASE_ADDR + handshak_reqg;
send_data[2] = 32;
send_info(state, send_data);

send_datai0] = BASE_ADDR + delay_req;
send_data[?] = 00;
send_info(state, send_data);

send_dataf0] = BASE_ADDR + normiz_reg;
send_data[2] = 00,
send_info{state, send_data);

send_data[0] = BASE_ADDR + statuscont_reg;
send_data[2] = 00;
send_info(state, send_data);

send_data[0] = BASE_ADDR + transfercont_reg;
send_datal2] = 2;
send_info(state, send_data);

send_data[0] = BASE_ADDR + data_req;
send_data[2} = 255;
send_info(state, send_data);

void send__info(char state[}, float send_data[])

{

IOEOI (7L, 0}, IOEOL (7L, *”, O},
ICOUTPUTS (70900L, “DIAG:POKE ", 10}
IOEO! (7L, 1);10EQL (7L, state, 0);
IOOUTPUTA (70800L, send_data, 3);

Register

B-21

Writing a 16-bit Word

HP BASIC Vesion

C Version

Reading an 8-bit Byte

HP BASIC Vesion

B-22 Register

Similar to the last program example, this progam outputs 2 16-bit word to
your peripherat device. To write a 16-bit word, two consecutive ports are
required (i.e. ports 0 and 1, 1 and 2, 2 and 3, or 3 and 4). Both ports must be
configured exactly the same. Configure consecutive port registers by
addressing the lower port’s register ands sending a 16-bit word.
Handshaking is accomplished using the lower port’s handshake lines.

10 Base_addr = DVAL{"1FE400" 16)
! Logical Address 144
20 WRITEIO -9826,Base_Addr+DVAL{“19%,16);DVAL("3232",16)

! Sets Ports 0 & I Handshake Register 1o leading edge handshake and flug
driven transfer

30 WRITEIO -9826,Base_Addr+DVAL(“1D",16);DVAL("0000",16
! Sets Ports 0 & 1 Delay Register to 0
40 WRITEIO -9826 ,Base_Addr+DVAL(*21",16);DVAL("0000",16)

! Sets Ports 0 & 1 Normalization Register {polarity} to positive-true (High
= [rie)

50 WRITEIO -826,Base_Addr+DVAL("11",16);DVAL(“0000",16)
18ets Ports 0 & 1 Status Control bit 6 1o enable output
60 WRITEIO -9826,Base_Addr+DVAL("0D", 16),DVAL(*0202",16)
! Sets Ports 0 & I Transfer Control Register bit 1 to Enable Handshake
70 WRITEIO -9826 ,Base_Addr+DVAL("15" 16);512
! Sets Ports 0 & I Data Register to the value to output
80 REPEAT
90 UNTIL BIT(READIO { 9826,Base_addr+DVAL("0D",16)),1)
100! if more data to send, repeat lines 70 - 90
110 WRITEIO 9826,Base_Addr+DVAL(“0D",16),DVAL(“0000",16)
! Clears Ports (0 & 1 Transfer Control Register bit 1 to Disable Handshake
120 END

The C program is similar to that shown for writing an 8-bit byte except the
data sent to the registers must be 16 bits.

Using the input algorithm described earlier, the following programs describe
how to input an 8-bit byte from your peripheral device. The program use a
leading edge handshake and flag-driven data transfer.

10 Base_addr = DVAL("1FE400",16)
! Logical Address 144
20 WRITEIO 9826,Base_Addr+DVAL(“19",16);32

! Set Port 1 Handshake Register to leading edge handshake and flag
driven transfer

30 WRITEIO 9826 Base_Addr+DVAL("1D",16);00

! Set Port 1 Delay Register to 0
40 WRITEIOQ 9826 Base_Addr+DVAL("21",16);00

! Set Port | Normalization Register (polarity) to positive-true (High = true)
50 WRITEIO 9826,Base_Addr+DVAL("11",16);64

C Version

! 8et Port I Status Conirol bit 6 10 enable putput
60 WRITEIO 9826 Base_Addr+DVAL{"0D",16};2

! Set Port I Transfer Control Register bit 1 to Enable Handshake
70 A = READIO (9826 Base_addr+DVAL("15",16))
80 Print A
90 ! If more data to send, repeat lines 70 - 80
100 WRITEIO 9826,Base_Addr+DVAL(“0D",16);0

! Clear Port 1 Transfer Control Register bit 1 1o Disable Handshake
110 END :

/* reading an 8-bit byte */

#include <stdio.h>

#include <chpib.h>

#define LOG_ADDR 144

#define BASE_ADDR (long) ((Ox1FC000) + (64 * LOG_ADDR))
void send_info(char statef], float send_datal[});

main {)

{
float send_data[3], read;
char state[2] = {13,10};

int handshak_reg, delay_reg, normiz_reg,
statuscont_req, transfercont_reg, data_req:

handshak_reg = 0x19;

delay_reg = 0x1D;

normiz_reg = O0x21;

statuscont_req = Ox11;

transfercont_reg = 0x0D;

data_reg = Ox15;

send_dataj1] = 16;

send_data[0} = BASE_ADDR + handshak_reg;
send_data[2] = 32;
send_info(state, send_data);

send_data[0] = BASE_ADDR + delay_req;

send_data[2] = 00;
send_info(state, send_data);

send_data[0] = BASE_ADDR + normiz_reg;
send_data[2] = 00;

send_info(state, send_data);

send_datal0] = BASE_ADDR + statuscont_reg;

Register

B-23

send_data[2] = 00;
send_info{state, send_data);

send_data[0] = BASE_ADDR + transfercont_reg;
send,_data{2] = 2;
send_info{state, send_data);

send_data[0] = BASE_ADDR + data_reg;

IOEOI (7L, 0); IOEOCL (7L, “",0;

IO0OUTPUTS (70900L, “DIAG:PEEK? ", 11);
IOEOI (7L, 1); IOEOL (7L, state, 2);
IOOUTPUTA (709001, send_data, 2);

IOENTER (70900L, &read),

printf(*\nData read from module = %X",(int)read);

send_data[0] = BASE_ADDR + transfercont_reg;
send_datal2] = 0;
send_info(state, send_data);

return 0;

}

void send_info(char state{], float send_data[])

{
IOEOI (7L, O):I0EOL (7L, *", 0);
IOCUTPUTS (708001, “DIAG:POKE ", 10%;
IOEOI (7L, 1);l0EOL (7L, state, 0);
ICOUTPUTA (70900L, send_data, 3);

Reading a 16-bit Word To read a 16-bit word, two consecutive ports are required (i.c. ports 0 and 1,
1and 2, 2 and 3, or 3 and 4). Both ports must be configured exactly the
same. configuring consecutive port registers by addressing the lower port’s
register ands sending a 16-bit word. Handshaking is accomplished using the
lower port’s handshake lines.

PIR Interrupts on the The HP E1330 has four lines, PIRO - PIR3, which are connected to the
HP E1330 mainframe interrupt circuitry. No SCPI commands can respond to these
lines. To access these lines you must use register based programming.
Registers are used to enable an interrupt and program a high-to-low
transition or low-to-high transition causing the interrupt. The following
program demonstrates how to access this interrupt capability.

10 I Digital YO E1330A Interrupt/SRQ on PIR

20 ! Program to cause Series B to SRQ computer on receipt of a
30 ! Peripheral Interrupt Request (PIRO-PIR3) on the E1330A.
40 ! The interrupt routine determines which PIR caused the intr.
50 ! Meanwhile, digital reads and writes are occuring through

B-24 Register

60 !the EI330A’s four data ports,

70 I CONDITIONS UNDER WHICH THIS WILL WORK:

80 I EI330A interrupt jumper on card is set to 2

90 ! NO HANDSHAKING for digital reads and writes, bytes only
100 ! Series B firmware must be Revision A.03.00

110 ' VITAL NOTE: Series B system instrument must NOT be talked
120 !t after interrupis have been enabled,

130 !

40 !

150 linitialize variables

160 !/

170 COM @8Sys,Ladd

180 DiM Err$[100]

180 Pon=0

200 Step=1

210 lLadd=64 idio logical address
220 Syst=70800 Isystem hpib address

230 ASSIGN @8ys TO Syst

240 ASSIGN @Dio TO Syst+Ladd/s

260 ONKEY 1 LABEL “STOP” GOTO Done

2650 !

270 !initial set-up for interrupt and SRQ

280 !

280 OUTPUT @Sys:""RST"

300 WAIT A

310 ONINTR 7,2 CALL Intr_req

320 OUTPUT @8ys;"*SRE 186"

330 OUTPUT @Sys;"DIAG:INT:SETUP2 ON"

340 CALL Setup_intr

350 ENABLEINTR7:2

360 !

370 !on-going digital read/writes. Every port alternating read,write.
380 ! system instrument must NOT be talked to during this.

390 !

400 LOOP

410 REPEAT

420 DISP Pont

430 OUTPUT @Dio;"MEAS:DIG:DATA"&VALS (Port)&"?"
440 ENTER @Dio;X

450 OUTPUT @Dio;"SOUR:DIG:DATA"&VALS(Port+Step)&" 0"
460 Port=Port+2*Step

470 UNTIL Pori<0 OR Pornt>3

480 Step=-1"Step

490 Port=Port+Step

500 END LOOP

Register B-25

sio!

520 ! Executed if softkey I has been pushed. Disables all interrup!s.
330 ! Empties error buffer if any have accumulated.

540!

550 Done: !

560 OFF INTR 7

570 CLEAR 7

580 OUTPUT @Sys;"DIAGINT:SETUPZ OFF"

590 QUTPUT @Dio;""RST"

600 REPEAT

610 QUTPUT @Sys;"SYST:ERR?"

620 ENTER @Sys;Ern$

630 PRINT Err$

640 UNTIL NOT VAL(Er$)

650 END

660 !

670 ! Following sub enables EI330A’s interrupis, and enables sysiem
680 } instrument to pass on interrupt to computer through SR(J.
6590 !

700 SUB Setup_intr

710 COM @8ys,Ladd

720 Vxi$="VXI:WRITE “&VAL$(Ladd)&","

730 OUTPUT @Sys;Vxis&"4,-1" ! all 16 bits set = 1;stat/cntl
reg

740 QUTPUT @Sys;Vxi$&"4,-2" ! all except bit 0 set= 1

750 ! The above does a soft reset.

760 !

770 OUTPUT @Sys;Vxi$&"8, -31869" ! bits 0,1,7.8,9,15 set=1;
intr/entl

780 OQUTPUT @Sys;Vxi$&"10,-31869" !sameforports2 @ 3
790 ! Sets PIEN (port intr enable)

800 !

810 OQUTPUT @Sys;Vxi$&"12,_32640" I bits 7 & 15 set; Xfer Cnil
reg

820 OUTPUT @8ys;Vxi$&"14,-32640" Isameforports 2 & 3
830 ! Sets PI enabling peripheral interrupt line

840 !

850 OUTPUT @Sys;"DIAGINT-WAIT?"

860 ! once this statement is set, @ Sys must NOT be talked to!
870 SUBEND

880 !

890 ! Following sub services an SRQ, DETERMINES pir LINE THAT
INTERRUPTED,,

900 !and re-enables the interrupt flow.

gl !

8920 SUB Intr_req
930 COM @Sys Ladd

B-26 Register

940 BEEP

850 ENTER @Sys;A$

960 A=SPOLL(@Sys)

870 QUTPUT @8Sys;"VXIIREAD? “&VALS$(Ladd)&" 4"
980 ENTER @Sys:intr_vector

890 FORI=0TO3

1600 IF NOT BIT(Intr_vector,8+) THEN PRINT “PIR":
1010 NEXTI

1020 CALL Setup_intr

1030 ENABLE INTR 7:2

1040 SUBEND

HP E1330 Non-data The HP E1330 has several signal lines other than the data lines which can
Line I/O be individually controlled. These lines are the FLG, CTL, STS, RES, and
PIR lines. The following BASIC language program demonstrates how to

control these lines,

FLGO - FLG3 are input lines Input from the peripheral to the HP E1330
module) that can be used as individual input lines when not used as
handshake lines. The subroutine Ctl_flg_io demonstrates using SCPI
commands to control these lines.

CTLO - CTL3 are output lines (output from the HP E1330 module to your
peripheral) which can be controlled individually when not used as
handshaking lines. Subroutine Ctl_fig_io demonstrates driving these lines
using SCPI programming commands.

STSO - STS3 are input lines that can be controlled using register based
programming. Subroutine Res_sts_io demonstrates using register based
programming of these lines,

RESO - RES3 are output lines that can be controlled using register based
programming. Subroutines Res_sts_jo, Res_pir_io, and Res_pi_io
demonstrate register programming.

PIRO - PIR3 are input lines. Subroutine Res_pir_io demonsirates directly
reading these input lines. Subroutine Res_pi_io demonstrates reading a
tatched version of these inputs.

10 ! re-save “DIG_NDL"

20! PROGRAM TO DEMONSTRATE THE NON-DATA
LINES—FLAG/CONTROLRES/STS, PIR

30 ! This main line code is reserved as a error handling shell
40! All application code must be at lower level context

50 ASSIGN @Sys TO 70900 ! define /O paths
60 ASSIGN @Dvm TO 70903

70 ASSIGN @Dig TO 70910

Register B-27

B-28 Register

80 COM @Sys,@Dvm, @Dig”’

90 ON TIMEOQUT 7,3 GOTO End HMurn TIMEGUTS 1o
errors—this branch never
taken

100 ON ERROR RECOVER Kaboom [This handles timeouts and errors
not handled

110 at lower level contexts

120 Main ! Put application code in this
sub

127 PRINT ™

130 E13xx_errors

140 GOTO End

150 Kaboom:PRINT

160 PRINT ERRM$

170 PRINT "HERE IS THE E13XX ERROR STATUS”
180 EI3xx_errors

190 End:END

200 !

210 SUB E13xx_errors IThis sub reads ail errors from
El3xx instruments

220 COM @8ys,@Dvm, @Dig

230 DIM AS[128]

240 ABORT 7

250 CLEAR @DVM

260 REPEAT

270 CUTPUT @Dvm;"SYST:ERR?"
280 ENTER @Dvm:A A$

290 PRINT “OVM ERROR ":A%
300 UNTIL A=0

30 !

320 CLEAR @8Sys

330 REPEAT

340 CUTPUT @Sys;"SYST.ERR?"
350 ENTER @Sys;A AS

360 PRINT “SYSTEM ERROR ":A$
370 UNTIL A=0

380 !

380 CLEAR @Dig

400 REPEAT

410 QUTPUT @Dig;"SYST:ERR?"
420 ENTER @Dig;A A$

430 PRINT “DIG IYO ERROR ":A$
440 UNTIL A=0

450 SUBEND

460 !

470 SUB Main IThis subroutine is freated as
the main line

480 COM @8ys,@Dvm, @Dig

480 Cnt_flg_io ! DEMONSTRATE DRIVING
CONTROLO, RECEIVING
FLAG#

500 Res_sts_io ! DEMONSTRATE
DRIVING RESO, RECEIVING
STS0

510 Res_pir_io ! DEMONSTRATE
DRIVING RESO, RECEIVING
PIRG

520 Res_pi_io ! DEMONSTRATE
DRIVING RESG, RECEIVING
PID

530 !Put Application code here

540 SUBEND

550

560 SUB Cni_flg_io ! DEMONSTRATES DRIVING
CONTROLO THEN
RECEIVING Flag 0

570 COM @S8ys, @Dvm, @Big !CONNECT CONTROL 6 TO
FLAG O

580 PRINT

590 PRINT “SUBPROGRAM Cnt_flg_io"

600 QUTPUT @Dig;"*RST" ! RESETTO POWER ON
STATE

610 QUTPUT @Dig;"SOUR:DIG:CONTO:VAL 0" ! DRIVE
CONTROLOTO O

620 OUTPUT @Dig;"MEAS:DIG:FLAGO?" ! READ FLAG 0

630 ENTER @Dig;A

6%0 A PRINT “CONTROLO DRIVEN TO 0 AND FLAGO RECEIVED

A H;

650 OQUTPUT @Dig;"SOUR:DIG:CONTO:VAL 1"

! DRIVE

CONTROLOTO 1

660 OUTPUT @Dig;"MEAS:DIG:FLAGO?"

670ENTER @Dig:A

PRINT “CONTROLO DRIVEN TO A 1 AND FLAGO
RECEIVED ASA™ A

680

690
700
710

720
730
740
750
760
770

780

PRINT "
SUBEND
SUB Res_sts_io

! CONNECT RESO TO STS0

IREAD FLAG 0

! DEMONSTRATES DRIVING
RESO THEN RECEIVING STS0

IUSE REGISTER PROGRAMMING TO USE RESC & STSO

COM @8ys, @Dvm, @ Dig
PRINT =

PRINT “SUBPROGRAM Res_sts_jo”

OUTPUT @Dig,"RST"

Ladd=80

! RESET TO POWER ON
STATE

Register B-29

B-30 Register

790 ! Base=Start of AIG+Qffset to VXI Reg+Offset to card Reg
800 Base=2031616+49152+(Ladd*64)

810 OUTPUT @Sys;"DIAG:POKE “&VAL$(Base+(DVAL("10" 16)))
&' 8,64 |DRIVERESOTO O

820 OUTPUT @Sys;"DIAG:PEEK? "&VALS(Base+(DVAL("10",16)))
&"8" IREAD REG B+10H

830 ENTER @SysA
840 Bit0=BIT(A,0)
B850 PRINT “RESQ DRIVEN TO 0, STS0 RECEIVED AS ":Bito

860 OUTPUT @Sys:"DIAG:POKE “&VAL$(Base+(DVAL("10",16))
&'896" /DRIVERESOTO 1

870 OUTPUT @Sys;"DIAG:PEEK? “&VAL$(Base+(DVAL(*10",16)))
&"8" IREAD REG B+10H

880 ENTER @SysA

850 BitO=BIT(A,0)

800 PRINT “RESODRIVEN TO 1, STS0 RECEIVED AS ":Bit0
910 SUBEND

920 SUB Res_pir_io ! DEMONSTRATES DRIVING
RESO THEN RECEIVING FIR0O

930 ! CONNECT RESOTO PIR)
940 IUSE REGISTER PROGRAMMING TO USE RESQ & PIRO
950 COM @sS8ys,@Dvm, @Dig

960 PRINT ™

970 PRINT “SUBPROGRAM Res_pir_io"

980 OUTPUT @Dig;"RST" !RESETTO POWER ON
STATE

990 Ladd=80

1000 ! Base=Start of A16+Offset to VXI Reg+Offset to card Reg
1010 Base=2031616+49152+(Ladd*64)

1020 OUTPUT @Sys;'DIAG:POKE "&VAL$(Base+(DVAL("10",16)))
&'8,64" IDAIVE RESO TO

1030 OUTPUT @Sys;"DIAG:PEEK? “&VAL$(Base+(DVAL(10",16))
&' 8" !READ REG B+10H

1040 ENTER @Sys:A
1050 Bit1=BIT(A,1)
1060 PRINT “RESO DRIVEN TO 0, PIRO RECEIVED AS "Bit1

1070 OUTPUT @Sys;"DIAG:POKE “&VAL$(Base+(DVAL("10",16)))
&°8,96" /DRIVERESOTO 1

1080 OUTPUT @Sys;'DIAG:PEEK? "@VALS(Base+(DVAL("10" 16)))
&'8" IREAD REG B+10H

1090 ENTER @Sys;A

1100 Bit1=BIT(A1)

1110 PRINT “RES0 DRIVEN TO 1, PIRG RECEIVED AS ":Bit{
1120 SUBEND

1130 !

1140 SUB Res_pi_io I DEMONSTRATES DRIVING
RESO THEN RECEIVING PI
WHICH IS

141 I'LATCHED PIRO

1150 P CONNECT RESO TO PIRO
1170 USE REGISTER PROGRAMMING TO USE RESG & PIRO
1180 COM @Sys, @Dvm, @Dig

1190 PRINT
1200 PRINT “SUBPROGRAM Res _pi._io”
1210 OUTPUT @Dig;""RST" ! RESET TO POWER ON

STATE
1220 Ladd=80
12307 Base=Siart of AlG+ Offset to VXI Reg+Offset 10 card Reg
1240 Base=2031616+491 52+({Ladd"64)

1270 OUTPUT @Sys;"DIAG:POKE “&VALS$(Base+(DVAL('08,16)))
&'8,131" ISET PIEN=1

1280 OUTPUT @Sys;'DIAG:POKE "&VAL$(Base+(DVAL('0C" 16)))
&°,8,128" ISET Pl=1

1290 OUTPUT @Sys;'DIAG:POKE “&VAL$(Base+(DVAL("10" 16)))
&"8,64" IDRIVE RESO 7O 0

1300 QUTPUT @Sys;"DIAG,PEEK? "&VAL$(Base+(DVAL("10",16)))
&'.8" 1 READ REG B+10H

1310 ENTER @Sys:A
1320 Bit1=BIT(A,1)
1330 PRINT “RES0 DRIVEN TO 0, PIRO RECEIVED AS "Bit1

1340 OUTPUT @Sys;"DIAG:PEEK? “&VAL$(Base+(DVAL('0C" 16)
&"8" IREAD P

1350 ENTER @Sys:A
1370 Bit7=BIT(A,7)
1380 PRINT “PERIPHERAL INTERRUPT = "Bit7

1390 OUTPUT @Sys:"DIAG:POKE “@VALS(Base+(DVAL("10",16))
&".8,96" IDRIVE RESOTO 1

1400 OUTPUT @Sys;"DIAG:PEEK? “XVALS$(Base+(DVAL("10",16)
&'8" IREAD REG B110H

1410 ENTER @Sys;A
1420 Bit1=BIT(A,1)
1430 PRINT “RESO DRIVEN TO 1, PIRO RECEIVED AS "Bit{

1440 OUTPUT @8ys:"DIAG:PEEK? “&VALS(Base+(DVAL(*0C",16)))
&'8" IREAD PJ

1450 ENTER @Sys:A

1470 Bit7=BIT(A,7)

1480 PRINT “PERIPHERAL INTERRUPT = "BIT?
1490 SUBEND

Register B-31

Quad 8-bit Digital I/0 Module Error Messages

Table C-1. HP E1330 Quad 8-bit Digital /O Module Messages

Code

-101

-102

-103

-104

-108

-109

-113

-124

-128

-131

-138

-141

-161

-178

-221

L224

Message

Invalid character
Syntax error
Invahd separator

Data type error

Parameter not allowed
Missing parameter
Undefined header
Too many digits

Numeric data not allowed

Invalid suffix

Suffix not allowed

Invalid character data
Invalid block data
Expression data not allowed

Settings conflict

Hlegal parameter value

Cause

Unrecognized character in specified parameter

Command is missing a space or comma between parameters.
Command parameters are not separated by a comma.

The wrong data type (i.e. number, character, string, expression
was used when specifying a parameter.

Parameter specified in a commmand where none is allowed.
No parmeter specified when required.

Command header was incorrectly specified.

> 257 digits were specified for a parameter.

A number was specified for a parameter when
a letter is required.

Parameter suffix incorrectly specified,
Parameter suffix is specified when one is not allowed,

The parameter type specified is not allowed.,

Mismatch between character count in header and actual number of characters.

A parameter is enclosed in parentheses.

Digital /O command settings are in conflict {e.g., control asserted when

in a handshake mode other than NONE).

Inconsistent parameter value

Quad 8-bit Digital I/O Module Error Messages -1

Table C-1. HP E1330 Quad 8-bit Digital /O Module Messages {continued)

Code

=240

-410

-420

-430

-1000

Message

Hardware error

Query interrupted

Query unterminated

Query deadlocked

Out of memory

Cause

Hardware error detected during power-on cycle.
Return Digital /O Module to Hewlett-Packard for repair.

Data is not read from the output buffer before another command is issued.

Command which generates data not able to finish executing
due to a Digital I/O Module configuration error,

Command execution cannot continue since the mainframe’s
command input and data output buffers are full.
Clearing the instrument restores control.

No memory available.

C-2 Quad 8-bit Digital YO Module Error Messages

A
Abbreviated Commands, 5-2
Address switch

logical address,

setting, 2-2
Addressing

register,

2-2

B-1

B
Base address, B-3
Bitinput, 3-3
Bit output, 3-3

C
Card Status/Control Register, B-6
Command Reference
common commands, 3-29
DISPiay subsystem, 5-4
IEEE 488.2 commands, 5-29
ME ASure subsystem, 5-6
MEMory subsystem, 5-10
Quick Reference, 5-30, 5-31, 5-32, 5-33
SOURCce subsystem, 5-14
SYSTem subsystem, 5-28
Command separator, 5-2
Command Types, 5-1
Commands
abbreviated, 5-2

command separator, 5-2

common command format, 5-1

DIGital.: CONTroln:POLarity, 5-17

DI1Gital:CONTroln:POLarity?, 5-I8

DIGitalCONTroln[[VALue], 5-18

DIGitalb DATA[:BYTELHANDshake:DELay, 5-24

DIGital DATA[BYTE}HAND shake: DELay?, 5-25

DIGitalb DATA[BYTEL:HANDshake[:MODE], 5-26,
5-27

DIG#Hal:DATAR:LWORGE:BITm, 5-19

DIGitalDATAn:L WORd&:HANDshake:DELay, 5-24

DIGital DATAn:LWORd:HANDshake:DELay?, 5-25

DIGital:DATAn:LWORJ: HANDshake[MODE],

5-26

DIGitallDATAnLWORG:POLarity,
DIGital:DATAn:LWORdA:POLarity?,

5-21
5-21
5-20
5-22

DIGital DATAn.LWORA: TRACe,
DIGual:DATARLWORGLVALue},
DIGital DATArWORD:BITm, 5-19
DIGi#tal: DATAn:WORD:HANDshake:DELay,
DIGital DATAnWORD HANDshake:DELay?,

5-24
5-25

DIGital: DATARWORD:HANDshake:MODE], 5-26
DIGi#alDATAnWORD POLarity, 5-21

DIGital DATAn:WORD:POLarity?, 5-21
DIGital DATAR:WORD:TRACe, 5-20

DIGitall DATAnWORD[:VALue], 5-22

DIGi#tal, DATAn[:BYTE]:BITm, 5-19

DIGitall DATAn[:BYTE]:POLarity, 5-21
DIGital. DATAR[:BYTE]:POLarity?, 5-21
DIGitalDATAn[:BYTE].TRACe, 5-20

DIGita, DATAn[:BYTE][:VALue], 5-22
DIGital. FLAGn:POLarity?, 5-23

DIGital: HANDshaken:DELay, 5-25

DIGital HANDshaken:DELay?, 5-26

DIGital, TRACe:DEFine, 3-16

DIGital TRACe:DEFine?, 5-17

DIGital TRACe:DELete:ALL, 5-17

DIGital TRACe[:DATA], 5-15

DIGual TRACe[:DATA]?, 5-16
DISPlay:MONitor:PORT?, 35-5
DISPlayMONitor:PORTn, 5-3
DISPlayMONitor[;STATe], 5-4

IEEE 4882 standard, 5-1

implied, 5-2

MEASure:DIGital DATARLWORAE:BITm?, 5-7
MEASure:DIGitalDATAn LWORA: TRACe, 53-8
MEASure:DIGitalDATAn.LWORA[:VALue}?, 5-6
MEASure:DIGiual DATAnWORD:BITm?, 5-7
MEASure:DIGutal: DATAnWORD:TRACe, 5-8
MEASure:DIGital. DATAn:WORD[:VALue]?, 5-6
MEASure:DIGital DATAa[BYTELBITm?, 5-7
MEASure: DIGitall DATAn[:BYTELTRACe, 5-8
MEASure:DIGiutal.DATAn[BYTEIVALue}?, 5-6

MEASure:DIGUtal. FLAGn?, 59
MEMory:DELete:MACRo, 5-10
MEMoryVME:ADDRess, 5-11
MEMory VME:ADDRess?, 5412
MEMory.VME:SIZE, 5-12
MEMory.VME:SIZE?, 5-13

Index 1

5-13
5-13

MEMory VME:STATe,
MEMory:VME:STATe?,
parameters, 5-3
root, 52
SCPI command format, 5-1
short format, 5-2
SOURce:DIGital: FLAGn:POLarity,
SYSTem:?VERsion, 5-28
SYSTem:ERRor?, 5.28
Common command formats, 5-1
Common commands, 5-29
Configuring the Digital 1/O Module, 2-1

5-23

Configuring the Digital I/0 Module for Isolated Digital

/0, 27
Control (CTL) Lne,
Control line, 2-4

1-3,4-5

D

Data

direction, 4-2

input and output, 4-2
Data input, 3-2
Data lings, 1-2,4-4
Data output, 3-2
Description, 1-1
Device Identification Register, B-3
Digital I/O Module Peripheral Pin-out, 2-4
Digital Operation Algorithm, 3.1
DIGital: CONTroln:POLarity, 5-17
DIGital:CONTroln:PQOLarity?, 5-18
DIGi#tal:CONTroln[VALue], 35-18

DIGitalDATA[BYTEL.HANDshake:DELay,
DIGital DATA[BYTE]:HANDshake:DELay?,
DIGualDATALBYTE].HANDshake[:MODE],

3-27
DIGitalDATAn:LWORA:BITm, 5-19

DI1Gital DATAn:LWORdJA:HANDshake:DELay,
DIGital: DATAn:LWORd:HANDshake:DELay?,
DIGital:DATAn:LWORdA:HANDshake[:MODE],

DIGital: DATAnLWORAG: POLarity, 5-21
DIGital DATARLWORA:POLarity?, 5-21
DIGital DATAn:LWORA: TRACe, 5-20
DIGitallDATAnLWORAG[:VALue], 5-22
DIGialDATAn:WORD:BITm, 5-19

DIGitalDATAn:WORD:HANDshake:DELay,
DIGitabkDATAnWORD:HANDshake:DELay?,
DIGitabDATAmWORD:HANDshake[MODE],

DIGiabDATAnWORD POLarity, 5-21
DIG#tabDATAnWORD:POLarity?, 5-21
DIGi#atDATARWORD TRACe, 5-20
DIGitatDATAnWORD[:'VALue), 5-22

2 Index

5-24
5-25
5-26,

5-24
5-25
5-26

5-24
5-25
5-26

PIGialDATAaEBYTELBITm, 5-19

DIGital:DATAn{.BYTE]:POLarity, 3-21
DIGital DATAR{:BYTE:POLarity?, 5-21
DIGital: DPATAn[BYTE].TRACe, 5-20
DiGital DATABYTE][:VALue], 5-22
DI1Gital FLAGn:POLarity, 5-23
DIGital FLAGn:POLarity?, 5-23
DIGital: H ANDshaken:DELay, 5-25
DIGital HANDshaken:DELay?, 5-26

DIGital.: TRACe:DEFine, 35-16
DIGital: TRACe:DEFine?, 5-17
DIGitall TRACe:DELete:ALL, 5-17
DIGitab TRACe[[DATA] 515
DIGuakTRACe[[IDATA]?, 5-16
Direction of Data Flow, 4-2
DISPlay subsystem, 5+4
DISPlay:MONitor:PORT?, 5.5
DISPlay:MONitor:PORTn, 5-3
DISPlayMONitor[;STATe], 54
Driver/Receiver Circuits, 4-8

F

Fast Handshake,
Flag (FLG) line,
Flag driven, B-10
Flag line, 2-4
Flag lines

jumpers, 2-4
Format

data, 3-7

B-10
1-3,4-5

G

GPIO
data transfer, 2-8
definition, 2-8

H

Handshake lines,
Handshake Modes
Leading edge, 3-4
Partial, 34
Puise, 3-4
Strobe, 3-4
Trailing edge, 3-4
using, 3-4
Handshaking
control (CTL) line, 3-4
flag (FLG) line, 3-4
Handshaking Commands, 3-6

1-2,44

Handshaking mode
PULSe, 3-7
LEADing, 3-6
NONE, 3-6
PARTial, 3-7
STRobe, 3-7
TR Ailing, 3-7

HP-1B, 1-4
primary address, 1-4
secondary address, 1-4

1

1/0, 24

1IEN - main interrupt enable,
Implied commands, 5-2
Input/Output FOline, 1-3,4-3
Input/Output line, 2-4
Inputting and Outputting Bits,
Inputting data, 1-5

Interface Circuit, 4-3
Interrupt Driven, B-10
Interrupt flags, B-6

Interrupt lings, 2-3

B-6

3-3

Isotation peripheral, 2-7
L

Linking commands, 5-3
M

Manufacturer {dentification Register, B-5
ME ASure subsystem, 5-6
MEASure:DIGi#al: DATAn: LWORA:BITm?,
MEASure:DIGital DATARLWORA. TRACe,
MEASuere:DIGitall DATAn:LWORAG[VALuel?,

MEASure:DIGital.DATAn:WORD:BITm?, 5-7

57
5-8
5-6

ME ASure:DIGital DATAnWORD TRACe, 5-8
MEASure:DiGital.l DATAn:WORD[VALuel?, 56
ME ASure:DIGitall DATAn[:BYTE]J:VALuel?, 5-6

MEASure:DIGitabFLAGn?, 59
MEMory subsystemn, 5-10
MEMory.DELete: MACRo, 5-10
MEMory,VME:ADDRess, 5-11
MEMory.VME:ADDRess?, 5-12
MEMoryVME:SIZE, 5-12
MEMory,VME:SIZE?, 5-13
MEMory.VME:STATe?, 5-13

Module specifications, A-1

0

Optional parameters, 3-3
Outputting data, 1-5

P

Parameters, 5-3
Peripheral Interface Connectors,
Peripheral Interrupt line, 2-4
PIR, 24
Polarity
control (CTL) line, 3.3
Data lines, 3-3
flag (FLG) line, 3-3
setting, 3-3
Port Handshake Register,
Port Control/Status Register,
Port Controller, 4-3
Port Data Register,
Port Delay Register,
Port description, 1-1
Port Interface Circuits, 4-3
Port Interrupt Control Register, B-6
Port Normalization Register, B-12
Port Transfer Control Register, B-7
Programming, 1-4
Programming Examples, Register Based, B-16

4-4

B-10
B-8

B-10
B-11

Pull-ups, 2-2
Q

Quick Reference, 35-30, 5-31, 5-32, 5-33
R

Register
Card Status/Conirol, B-6
Device Identification Register, B-5
Manufacturer Identification Register,
Port Control/Status Register, B-&
Port Interrupt Control Register, B-6
Port Normalization Register, B-12
Port Transfer Control Register, B-7

Register addressing, B-1

Register Based Programing Examples,

Register Definitions, B-5

Register Description, B-3

Register offset, B-3

Register-Based Input Algorithm, B-15

Register-Based Output Algorithm, B-14

B-5

B-16

Index 3

Register-based programming
example - reading the ID register, B-18
example - resetting the multiplexer, B-16
example program system configuration, B-16
programming examples, B-16

Registers
Port Data Register, B-10

Registers:Port, B-10

Registers:Port Delay Register, B-11

Reset and Registers, B-4

Reset line, 2.4

Ribbon cable, 1-1

Root command, 5-2

S

SCPI, I-1
handshake modes, 3-4
implied commands, -5
optional letters, 1-5
sending commands, 1-4
specifying commands, 1-5
SCPI command format, 5-1
SCPI Command Reference, 5-4
Short command format, 5-2
" SOURce suybsystem, 5-14
Specifications, A-1
SR -softreset, B-6
Standard Commands for Programming Instruments, 1.1
Status line, 2-4
STS, 24
System Overview, 4-1
SYSTem subsystern, 5-28
SYSTem:ERRor?, 35-28
SYSTem:VERsion?, 5-28

T

Transfer Mode, B-10

)
tInderstanding the Quad 8-bit Digitai YO Module, 4-1,

4-2, 4-3, 4-4, 4.5, 4-6, 4-7, 4-8
Using the Quad 8-bit Digital /O Module, 3-1

\Y

VMEbus, I-1
VXIbus Connector, 4-3

4 Index

