Electrical Sampling Modules 80E11 • 80E11X1 • 80E10B • 80E09B • 80E08B • 80E07B • 80E04 • 80E03 • 80E03-NV • 80E01 Datasheet # Features & Benefits #### All Modules - Up to 70 GHz Bandwidth and 5 ps Measured Rise Time (10-90%) - Lowest Noise for Analysis: 450 μV_{RMS} at 60 GHz, 300 μV_{RMS} at 30 GHz - Remote Samplers*1 enable Location of Sampler Near DUT and ensure Best Signal Fidelity - Independent Sampler Deskew ensures Easy Fixture and Probe De-embedding - Dual Channel (Except 80E01 and 80E11X1) - Precision Microwave Connectors (3.5 mm, 2.92 mm, 2.4 mm, and 1.85 mm) - Probe Support ### **TDR Modules** - 15 ps Reflected True Differential Fully Integrated TDR Rise Time (12 ps Incident) and feature Resolution Below 1 mm - Efficient, Accurate, Easy to Use, and Cost-effective S-parameters up to 50 GHz # **Applications** - Impedance Characterization and S-parameter Measurements for Serial Data Applications - Advanced Jitter, Noise, and BER Analysis - Channel and Eye-diagram Simulation and Measurement-based Spice Modeling # 80E10B, 80E08B, and 80E04 - High-performance TDR/T Measurements - Impedance Profile, Inductance, Capacitance, and S-parameters - Transmission Line Quality, Impedance, and Crosstalk - True Differential, Common Mode, and Single-ended Measurements - Efficient Fault Isolation #### 80E11, 80E11X1, 80E09B, 80E07B - High-frequency, Low-noise Signal Acquisition - Fast Rise Time Measurements - Jitter Analysis and Waveform Analysis ### 80E03, 80E03-NV - Device Characterization, Transmission Quality, Waveform Parameters - Low Signal Measurements ^{*1} Integrated on 80E07B - 80E10B and optional on 80E01 - 80E04, 80E11 and 80E11X1. #### TDR Modules: 80E10B, 80E08B, and 80E04 The 80E10B, 80E08B, and 80E04 are dual-channel Time Domain Reflectometry (TDR) sampling modules, providing up to 12 ps incident and 15 ps reflected rise time in the 80E10B (18 ps incident in 80E08B and 23 ps incident in 80E04). Each channel of these modules is capable of generating a fast step for use in TDR mode and the acquisition portion of the sampling module monitors the incident step and any reflected energy. The polarity of each channel's step can be selected independently. This allows for differential or common mode TDR or S-parameter testing of two coupled lines, in addition to the independent testing of isolated lines. The independent step generation for each channel allows true differential measurements, which ensures measurement accuracy for differential devices. The 80E10B and 80E08B are small form factor, fully integrated independent 2-meter remote sampler systems, enabling location of the sampler near the DUT and ensuring the best signal fidelity. An optional 2-meter extender is available for the 80E04. The modules characterize crosstalk by using TDR steps to drive one line (or line pair for differential crosstalk) while monitoring a second line (or line pair) with the other channel (or another module for differential crosstalk). The "filter" function on the 8000 series mainframes can be used with TDR or crosstalk measurements to characterize expected system performance with slower edge rates. All modules have independent incident step and receiver deskew to remove the effect of measurement fixtures and probes, enabling faster and easier de-embedding of test fixtures. The 80E10B sampling modules provide an acquisition rise time of 7 ps, with up to 50 GHz user-selectable equivalent bandwidth (with 50, 40, and 30 GHz settings). The 80E08B sampling bandwidth is 30 GHz (user selectable with 30 and 20 GHz settings) and 80E04 sampling bandwidth is 20 GHz. The 20 GHz P8018 single-ended and 18 GHz P80318 differential variable pitch TDR probes provide excellent performance and compliance, ensuring easy and accurate backplane and package measurements. When the user employs these modules with Tektronix IConnect® TDR and VNA software, he or she can acquire up to 1,000,000 data points and obtain up to 50 GHz differential, mixed mode, and single-ended S-parameters. IConnect also enables impedance, S-parameters, and eye-diagram compliance testing as required by various serial data standards, as well as full channel analysis, Touchstone (SnP) file output, and SPICE modeling for gigabit interconnects. # Sampling Modules: 80E11, 80E11X1, 80E09B, 80E07B, 80E03, 80E03-NV, and 80E01 The 80E09B and 80E07B are dual-channel modules with remote samplers, capable of 450 μV_{RMS} noise at 60 GHz sampling bandwidth, and 300 μV at 30 GHz sampling bandwidth. Each small form factor remote sampler is attached to a 2-meter cable in order to minimize the effects of cables, probes, and fixtures, allow close location of the sampler to the DUT, and ensure best signal fidelity. User-selectable bandwidth settings (60/40/30 on 80E09B and 30/20 on 80E07B) offer optimal noise/bandwidth trade-off. The 80E11 and 80E11X1 are dual and single channel, 70+ GHz bandwidth sampling modules. These modules provide the widest measurement bandwidth and fastest rise time measurements with world class signal fidelity. User-selectable bandwidth settings (70/60/40 GHz) enable optimal noise/bandwidth trade-off. The 80E01 is a single-channel, 50 GHz bandwidth sampling module. The 80E11, 80E11X1, and 80E01 modules can be used with the optional 2-meter extender cable, which ensures superior signal fidelity and measurement flexibility. The 80E03 and 80E03-NV are dual-channel, 20 GHz sampling modules. These sampling modules provide an acquisition rise time of 17.5 ps or less. An optional 2-meter extender cable is available. When used with Tektronix 80SJNB Jitter, Noise, and BER software, these modules enable separation of both jitter and noise into their components, understanding precise causes of eye closure, and obtaining highly accurate extrapolation of BER and 3-D eye contour. When used with the 82A04B phase reference module, time-base accuracy can be improved down to <100 fs_{RMS} jitter, which together with the 300 μV noise floor and 16 bits of resolution ensures the highest signal fidelity for the measured signals. #### Performance You Can Count On Depend on Tektronix to provide you with performance you can count on. In addition to industry-leading service and support, this product comes backed by a one-year warranty as standard. # **Characteristics** | Module | Application Type | Channels | Input Impedance | Channel Input
Connector | Bandwidth*2 | |-------------------|---|----------|-----------------|---|----------------------------| | 80E11, 80E11X1 | High-frequency, low-noise, signal acquisition and jitter characterization | 2/1 | 50 ±1.0 Ω | 1.85 mm female, precision adapter to 2.92 mm included with 50 Ω SMA termination | 70/60/40 GHz*4 | | 80E10B | True differential TDR,
S-parameters, and fault
isolation | 2 | 50 ±1.0 Ω | 1.85 mm female, precision adapter to 2.92 mm included with 50 Ω SMA termination | 50/40/30 GHz*4 | | 80E09B | High-frequency, low-noise signal acquisition and jitter characterization | 2 | 50 ±1.0 Ω | 1.85 mm female, precision adapter to 2.92 mm included with 50 Ω SMA termination | 60/40/30 GHz* ⁴ | | 80E08B | True differential TDR and S-parameters | 2 | 50 ±1.0 Ω | 2.92 mm female | 30/20 GHz*4 | | 80E07B | Optimal noise/performance
trade-off for jitter
characterization | 2 | 50 ±1.0 Ω | 2.92 mm female | 30/20 GHz*4 | | 80E04 | TDR impedance and crosstalk characterization | 2 | 50 ±0.5 Ω | 3.5 mm female | 20 GHz*3 | | 80E03
80E03-NV | Device characterization | 2 | 50 ±0.5 Ω | 3.5 mm female | 20 GHz*5 | | 80E01 | High-frequency, high
maximum operating range
signal acquisition | 1 | 50 ±0.5 Ω | 2.4 mm female, precision adapter to 2.92 mm included with 50 Ω SMA termination | 50 GHz | ^{*2} Values shown are warranted unless printed in an italic typeface which represents an unwarranted characteristic value that the instrument will typically perform to. ^{*5} The 80E03 bandwidth is calculated from 0.35 bandwidth rise time product. The 80E03-NV bandwidth is directly verified. | Module | Rise Time
(10% to 90%) | Dynamic Range | Offset Range | Maximum
Operating Voltage | Maximum
Nondestruct
Voltage, DC + AC _{p-p} | Vertical Number of
Digitized Bits | |-------------------|---------------------------|-----------------------|--------------|------------------------------|---|--------------------------------------| | 80E11, 80E11X1 | 5 ps*3 | 800 mV _{p-p} | ±1.1 V | ±1.1 V | 2.0 V | 16 bits full scale | | 80E10B | 7 ps*3 | 1.0 V _{p-p} | ±1.1 V | ±1.1 V | 2.0 V | 16 bits full scale | | 80E09B | 5.8 ps*3 | 1.0 V _{p-p} | ±1.1 V | ±1.1 V | 2.0 V | 16 bits full scale | | 80E08B | 11.7*3 | 1.0 V _{p-p} | ±1.1 V | ±1.1 V | 2.0 V | 16 bits full scale | | 80E07B | 11.7*3 | 1.0 V _{p-p} | ±1.1 V | ±1.1 V | 2.0 V | 16 bits full scale | | 80E04 | ≤17.5 ps | 1.0 V _{p-p} | ±1.6 V | ±1.6 V | 3.0 V | 16 bits full scale | | 80E03
80E03-NV | ≤17.5 ps | 1.0 V _{p-p} | ±1.6 V | ±1.6 V | 3.0 V | 16 bits full scale | | 80E01 | 7 ps *3 | 1.0 V _{p-p} | ±1.6 V | ±1.6 V | 2.0 V | 16 bits full scale | ^{*3} Calculated from 0.35 bandwidth rise time product. ^{*3} Calculated from 0.35 bandwidth rise time product. ^{*4} User selectable. | Module | Vertical Sensitivity Range | DC Vertical Voltage Accuracy,
Single Point, within ±2 °C of
Compensated Temperature | Typical Step Response Aberrations*2 | RMS Noise* (typical, maximum)² | |-------------------|----------------------------|---|---|--| | 80E11,
80E11X1 | 8 mV to 800 mV full scale | ±[2 mV + 0.007 (Offset) + 0.02 (Vertical Value – Offset)] | ±1% or less over the zone 10 ns to 20 ps before step transition; +6%, -10% or less for the first 400 ps following step transition; +0%, -4% or less over the zone 400 ps to 3 ns following step transition; +1%, -2% or less over the zone 3 ns to 100 ns following step transition; ±1% after 100 ns following step transition | 70 GHz: 950 μV, ≤1100 μV
60 GHz: 450 μV, ≤600 μV
40 GHz: 330 μV, ≤480 μV | | 80E10B | 10 mV to 1.0 V full scale | ±[2 mV + 0.007 (Offset) + 0.02 (Vertical Value – Offset)] | ±1% or less over the zone 10 ns to 20 ps before
step transition; +6%, -10% or less for the first
400 ps following step transition; +0%, -4% or
less over the zone 400 ps to 3 ns following step
transition; +1%, -2% or less over the zone
3 ns to 100 ns following step transition; ±1%
after 100 ns following step transition | 50 GHz: 600 μV, ≤700 μV
40 GHz: 370 μV, ≤480 μV
30 GHz: 300 μV, ≤410 μV | | 80E09B | 10 mV to 1.0 V full scale | ±[2 mV + 0.007 (Offset) + 0.02 (Vertical Value – Offset)] | ±1% or less over the zone 10 ns to 20 ps before
step transition; +6%, -10% or less for the first
400 ps following step transition; +0%, -4% or
less over the zone 400 ps to 3 ns following step
transition; +1%, -2% or less over the zone
3 ns to 100 ns following step transition; ±1%
after 100 ns following step transition | 60 GHz: 450 μV, ≤600 μV
40 GHz: 330 μV, ≤480 μV
30 GHz: 300 μV, ≤410 μV | | 80E08B | 10 mV to 1.0 V full scale | ±[2 mV + 0.007 (Offset) + 0.02 (Vertical Value – Offset)] | ±1% or less over the zone 10 ns to 20 ps before
step transition; +6%, -10% or less for the first
400 ps following step transition; +0%, -4% or
less over the zone 400 ps to 3 ns following step
transition; +1%, -2% or less over the zone
3 ns to 100 ns following step transition; ±1%
after 100 ns following step transition | 30 GHz: 300 μV, ≤410 μV
20 GHz: 280 μV, ≤380 μV | | 80E07B | 10 mV to 1.0 V full scale | ±[2 mV + 0.007 (Offset) + 0.02 (Vertical Value – Offset)] | ±1% or less over the zone 10 ns to 20 ps before
step transition; +6%, -10% or less for the first
400 ps following step transition; +0%, -4% or
less over the zone 400 ps to 3 ns following step
transition; +1%, -2% or less over the zone
3 ns to 100 ns following step transition; ±1%
after 100 ns following step transition | 30 GHz: 300 μV, ≤410 μV
20 GHz: 280 μV, ≤380 μV | | 80E04 | 10 mV to 1.0 V full scale | ±[2 mV + 0.007 (Offset) + 0.02 (Vertical Value – Offset)] | ±3% or less over the zone 10 ns to 20 ps
before step transition; +10%, -5% or less for
the first 300 ps following step transition; ±3%
or less over the zone 300 ps to 5 ns following
step transition; ±1% or less over the zone
5 ns to 100 ns following step transition; 0.5%
after 100 ns following step transition | 600 μV, ≤1.2 mV
(maximum) | | 80E03
80E03-NV | 10 mV to 1.0 V full scale | ±[2 mV + 0.007 (Offset) + 0.02 (Vertical Value – Offset)] | ±3% or less over the zone 10 ns to 20 ps
before step transition; +10%, -5% or less for
the first 300 ps following step transition; ±3%
or less over the zone 300 ps to 5 ns following
step transition; ±1% or less over the zone
5 ns to 100 ns following step transition; ±0.5%
after 100 ns following step transition | 600 μV, ≤1.2 mV
(maximum) | | 80E01 | 10 mV to 1.0 V full scale | ±[2 mV + 0.007 (Offset) + 0.02 (Vertical Value – Offset)] | ±3% or less over the zone 10 ns to 20 ps before
step transition; +12%, -5% or less for the first
300 ps following step transition; +5.5%, -3%
or less over the zone 300 ps to 3 ns following
step transition; ±1% or less over the zone
3 ns to 100 ns following step transition; ±0.5%
after 100 ns following step transition | 1.8 mV, ≤2.3 mV
(maximum) | ^{*2} Values shown are warranted unless printed in an italic typeface which represents a unwarranted characteristic value that the instrument will typically perform to. ### TDR System (80E10B, 80E08B, 80E04 only) | Characteristic | 80E10B | 80E08B | 80E04 | |--|--|--|--| | Channels | 2 | 2 | 2 | | Input Impedance | 50 Ω nominal | 50 Ω nominal | 50 Ω nominal | | Channel Input
Connector | 1.85 mm | 2.92 mm | 3.5 mm | | Bandwidth | 50 GHz | 30 GHz | 20 GHz | | TDR Step
Amplitude | 250 mV (polarity
of either step may
be inverted) | 250 mV (polarity
of either step may
be inverted) | 250 mV (polarity
of either step may
be inverted) | | TDR System
Reflected Rise
Time | 15 ps | 20 ps | 28 ps | | TDR System
Incident Rise Time | 12 ps | 18 ps | 23 ps | | TDR Step Deskew
Range | ±250 ps | ±250 ps | ±50 ps | | TDR Sampler
Deskew Range | ±250 ps | ±250 ps | +100 ns, -500 ps
(slot deskew only) | | TDR Step
Maximum
Repetition Rate | 300 kHz*6 | 300 kHz*6 | 300 kHz*6 | ^{*6} When used in combination with a DSA8200, TDS/CSA8200, TDS/CSA800B, or TDS/CSA8000 the TDR step maximum repetition rate is 200 kHz. #### **Physical Characteristics** | Module | Dimension
(mm / in.) | | | Weight
(kg / lb.) | |-------------------|-------------------------|----------|-----------|----------------------| | | Width | Height | Depth | Net | | 80E11,
80E11X1 | 79 / 3.1 | 25 / 1.0 | 135 / 5.3 | 0.4 / 0.87 | | 80E10B*7 | 55 / 2.2 | 25 / 1.0 | 75 / 3.0 | 0.175 / 0.37 | | 80E09B*7 | 55 / 2.2 | 25 / 1.0 | 75 / 3.0 | 0.175 / 0.37 | | 80E08B*7 | 55 / 2.2 | 25 / 1.0 | 75 / 3.0 | 0.175 / 0.37 | | 80E07B*7 | 55 / 2.2 | 25 / 1.0 | 75 / 3.0 | 0.175 / 0.37 | | 80E04 | 79 / 3.1 | 25 / 1.0 | 135 / 5.3 | 0.4 / 0.87 | | 80E03
80E03-NV | 79 / 3.1 | 25 / 1.0 | 135 / 5.3 | 0.4 / 0.87 | | 80E01 | 79 / 3.1 | 25 / 1.0 | 135 / 5.3 | 0.4 / 0.87 | ^{*7} Remote sampler module characteristics. # Ordering Information #### 80E11 Dual channel, 70+ GHz Sampling Module. Includes: User manual, certificate of traceable calibration standard, two precision adapters to 2.92 mm included with 50 Ω SMA terminations, one-year warranty. Single channel 80E11. #### 80E10B Dual-channel, 50 GHz True Differential TDR Sampling Module with Remote Includes: User manual, certificate of traceable calibration standard, two precision adapters to 2.92 mm included with 50 Ω SMA terminations, one year warranty. #### 80E09B Dual-channel, 60 GHz Sampling Module. Includes: User manual, certificate of traceable calibration standard, two precision adapters to 2.92 mm included with 50 Ω SMA terminations, one-year warranty. #### 80E08B Dual-channel, 30 GHz True Differential TDR Sampling Module with Remote **Includes**: User manual, certificate of traceable calibration standard, two 50 Ω SMA terminations, one-year warranty. Dual-channel, 30 GHz Sampling Module. **Includes**: User manual, certificate of traceable calibration standard, two 50 Ω SMA terminations, one-year warranty. Dual-channel, 20 GHz True Differential TDR Sampling Module. **Includes**: User manual, calibration data report, two 50 Ω SMA terminations, one-year warranty. ### 80E03 / 80E03-NV*8 Dual-channel, 20 GHz Sampling Module. **Includes**: User manual, calibration data report, two 50 Ω SMA terminations, one-year warranty. #### 80E01 Single-channel, 50 GHz Sampling Module. Includes: User manual, calibration data report, precision adapter to 2.92 mm included with 50 Ω SMA termination, one-year warranty. ^{*8} For the 80E03-NV, bandwidth is directly verified and the Calibration Certification Report includes test data on the module's bandwidth test results. # **Service Options** | Option | Description | |---------|---| | Opt. C3 | Calibration Service 3 Years | | Opt. C5 | Calibration Service 5 Years | | Opt. D1 | Calibration Data Report (not available with 80E07B - 80E10B, 80E11, 80E11X1) | | Opt. D3 | Calibration Data Report 3 Years (with Opt. C3) | | Opt. D5 | Calibration Data Report 5 Years (with Opt. C5) | | Opt. G3 | Complete Care 3 Years (includes loaner, scheduled calibration and more). 80E04, 80E08B, and 80E10B only | | Opt. G5 | Complete Care 5 Years (includes loaner, scheduled calibration and more). 80E04, 80E08B, and 80E10B only | | Opt. R3 | Repair Service 3 Years | | Opt. R5 | Repair Service 5 Years | ### **Other Accessories** | Accessory | Description | |-------------|---| | 80N01 | 2-meter Sampling Module Extender Cable (not for use with 80E07B, 80E08B, 80E09B, 80E10B) | | 015-1001-xx | 2X Attenuator (SMA Male-to-Female) | | 015-1002-xx | 5X Attenuator (SMA Male-to-Female) | | 011-0157-xx | Adapter (2.4 mm male to 2.92 mm female – can also be used as 1.85 mm male to 2.92 mm female) | | P8018 | 20 GHz Single-ended TDR Probe. 80A02 module (below) recommended for static protection of the sampling or TDR module | | P80318 | 18 GHz Differential TDR Probe. 80A02 module (below) recommended for static protection of each channel of the sampling or TDR module | | 80A02 | EOS/ESD Protection Module (1 channel). P8018 or P80318 TDR probe (above) recommended | # Interconnect Cables (3rd party) Tektronix recommends using quality high-performance interconnect cables with these high-bandwidth products in order to minimize measurement degradation and variations. The W.L. Gore & Associates' cable assemblies, accessible at www.gore.com/tektronix, are compatible with the 2.92 mm, 2.4 mm, and 1.85 mm connector interface of the 80Exx modules. Assemblies can be ordered by contacting Gore (at the URL above). ### Calibration Kits and Accessories (3rd party) To facilitate S-parameter measurements with these electrical modules and IConnect® software, we recommend precision calibration kits, adapter kits, connector savers, airlines, torque wrenches, and connector gauges from Maury Microwave. These components, accessible at www.maurymw.com/tektronix.htm, are compatible with the 2.92 mm, 2.4 mm, and 1.85 mm connector interface of the 80Exx modules. Cal kits and other components can be ordered by contacting Maury Microwave (at the URL above). Electrical Sampling Modules — 80E11 • 80E11X1 • 80E10B • 80E09B • 80E08B • 80E07B • 80E04 • 80E03 • 80E03-NV • 80E01 Datasheet Contact Tektronix: ASEAN / Australasia (65) 6356 3900 Austria 00800 2255 4835* Balkans, Israel, South Africa and other ISE Countries +41 52 675 3777 Belgium 00800 2255 4835* Brazil +55 (11) 3759 7627 Canada 1 800 833 9200 Central East Europe and the Baltics +41 52 675 3777 Central Europe & Greece +41 52 675 3777 Denmark +45 80 88 1401 Finland +41 52 675 3777 France 00800 2255 4835* Germany 00800 2255 4835* Hong Kong 400 820 5835 India 000 800 650 1835 Italy 00800 2255 4835* Japan 81 (3) 6714 3010 Luxembourg +41 52 675 3777 Mexico, Central/South America & Caribbean 52 (55) 56 04 50 90 Middle East, Asia, and North Africa +41 52 675 3777 Norway 800 16098 The Netherlands 00800 2255 4835* People's Republic of China 400 820 5835 Poland +41 52 675 3777 Portugal 80 08 12370 Republic of Korea 001 800 8255 2835 Russia & CIS +7 (495) 7484900 South Africa +41 52 675 3777 Spain 00800 2255 4835* Sweden 00800 2255 4835* Switzerland 00800 2255 4835* Taiwan 886 (2) 2722 9622 United Kingdom & Ireland 00800 2255 4835* USA 1 800 833 9200 USA 1 000 033 9200 * European toll-free number. If not accessible, call: +41 52 675 3777 Updated 10 February 2011 For Further Information. Tektronix maintains a comprehensive, constantly expanding collection of application notes, technical briefs and other resources to help engineers working on the cutting edge of technology. Please visit www.tektronix.com Copyright © Tektronix, Inc. All rights reserved. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that in all previously published material. Specification and price change privileges reserved. TEKTRONIX and TEK are registered trademarks of Tektronix, Inc. All other trade names referenced are the service marks, trademarks, or registered trademarks of their respective companies. 31 Oct 2012 85W-13497-14 www.tektronix.com