INPUT CHARACTERISTICS

Range:

Channel A 10 Hz to 100 MHz Channel B 10 Hz to 2.5 MHz

Sensitivity:

Channel A:

25 mV rms to 100 MHz

75 mV peak-to-peak minimum pulse with 5 ns. Channel 8:

25 mV rms to 2.5 MHz

75 mV peak-to-peak minimum pulse width of 50 ns

Coupling: AC

Impedance: 1 MΩ NOMINAL shunted by less than

30 pH

Attenuator: X1 or X20 NOMINAL (A Channel only)

Trigger Level:

Continuously variable #350 mV times attenuator setting around average value os signal.

Slope: Independent selection of ± or + slope **Channel Input:** Selectable SEPARATE or COMMON A **Damage Level:**

X1: DC to 100 kHz 350V (DC + peak AC) 100 kHz to 5 MHz 2.5 × 10/C × Hz Product Above 5 MHz 5V rms

X20: DC to 1 MHz 350V (DC | Peak AC) 1 MHz to 50 MHz 2.5 × 10⁸V × Hz Product

Above 50 MHz 5V rms

FREQUENCY (A)

Range:

10 Hz to 10 MHz direct count 10 Hz to 100 MHz prescaled by 10

LSD Displayed: Direct count 0.1 Hz, 1 Hz, 10 Hz switch selectable. Prescaled 10 Hz, 100 Hz, 1 kHz switch selectable.

Resolution: ± LSD

Accuracy: \pm LSD \pm (time base error) \times FREQ

PERIOD (A)

Range: 10 Hz to 2.5 MHz

LSD Displayed:

 $\frac{100 \text{ ns}}{N}$ for N=1 to 1000 in decade steps of N

Resolution:

 \pm LSD \pm 1.4 \times $\frac{1 \text{rigger Error}}{N}$

Accuracy

± L5D = 1.4 × Trigger Error

± (time base error) × PER

TIME INTERVAL (A TO B)

Range: 250 ns to 1 s LSD Displayed: 100 ns

Resolution: ± LSD + START Trigger Error ± STOP

Trigger Error

Accuracy: ± LSD ± START Trigger Error ± STOP

Trigger Error \pm (time base error) \times TI Trime Interval measurements require an arming signal for both the START and STOP Channels.

(See Paragraph 3-11 ;

RATIO

Range:

10 Hz to 10 MHz Channel A 10 Hz to 2.5 MHz Channel B LSD Displayed:

1 part in $\frac{A}{B} \times N$ in decade steps of N for N=1 to 1000

Resolution:

 \pm LSD \pm (B Trigger Error \times FREQUENCY A)/N

Accuracy:

± 1 count of A ± B Trigger Error × FREQUENCY A

TOTALIZE (A)

Range: 10 Hz to 10 MHz Resolution: ± 1 count of input

GENERAL

Check: Counts internal 10 MHz Oscillator

Display: 7-digit amber IED display with gate and over-

flow indication.

Maximum Sample Rate: 5 readings per second.

Operating Temperature: 0° to 50°C

Power Requirement:

100/120/230/240V rms +5%, -10%, 48-66 Hz; 10 VA maximum.

Weight: 2.0 kg (4.4 lbs.)

Dimension: 238 mm wide \times 98 mm high \times 276 mm long (936 \times 336 \times 1076 in.)

TIME BASE

Frequency: 10 MHz

Aging Rate: <3 parts in 107 per month
Temperature: <±1 part in 105, 0° to 50°C
Line Voltage: <±1 part in 107 for ±10% variation.

OPTIONS

Option 001: High Stability Time Base (TCXO)

Frequency: 10 MHz

Aging Rate: <1 part in 107 per month

Temperature: <±1 part in 108, 0° to 40°C

Line Voltage: <±1 part in 108 for ±10% variation

Option 002: Battery
Type: Recharageable lead-acid (sealed)

Capacity: TYPICALLY 8 hour of continuous operation

Recharging Time: TYPICALLY 16 hours to 98% of full charge, instrument nonoperating. Charging circuitry included with option. Batteries not charged during instrument operation.

Battery Voltage Sensor: Automatically shuts instrument off when low battery condition exists.

Line Failure Protection: Instrument automatically switches to batteries in case of line failure.

Weight: Option 002 adds 1.5 kg (3.3 lbs.) to weight of instrument.

DEFINITIONS

Resolution: Smallest discernible change of measurement result due to a minimum change in the input.

Accuracy: Deviation from the actual value as fixed by universally accepted standard of frequency and time.

Trigger Fron:

 $\sqrt{(80 \ \mu V)^2 + e_0^2}$ Input Siew Rate at Trigger Point ($\mu V/s$) (rms

Where e_n is the rms noise of the input for a 100 MHz bandwidth on Channel A and a 10 MHz bandwidth on Channel B

LSD: Least Significant Digit.