MS9710C
Optical Spectrum Analyzer
Remote Control
Operation Manual

Fourth Edition

4 N\
¢ For safety and warning information, please read this

manual before attempting to use the equipment.

¢ Additional safety and warning information is provided
within the MS9710C Optical Spectrum Analyzer
Operation Manual. Please also refer to this document
before using the equipment.

e Keep this manual with the equipment.
. J

ANRITSU CORPORATION

Document No.: M-W1580AE-4.0

Safety Symbols

To prevent the risk of personal injury or loss related to equipment malfunction, Anritsu Corporation uses the following
safety symbols to indicate safety-related information. Ensure that you clearly understand the meanings of the
symbols BEFORE using the equipment. Some or all of the following symbols may be used on all Anritsu
equipment. In addition, there may be other labels attached to products that are not shown in the diagrams in this
manual.

Symbols used in manual

DANGER f This indicates a very dangerous procedure that could result in serious injury or

death if not performed properly.

WARN I NG This indicates a hazardous procedure that could result in serious injury or death if
not performed properly.

CAUTION This indicates a hazardous procedure or danger that could result in light-to-severe
injury, or loss related to equipment malfunction, if proper precautions are not taken.

Safety Symbols Used on Equipment and in Manual

The following safety symbols are used inside or on the equipment near operation locations to provide information
about safety items and operation precautions. Ensure that you clearly understand the meanings of the symbols
and take the necessary precautions BEFORE using the equipment.

This indicates a prohibited operation. The prohibited operation is indicated
symbolically in or near the barred circle.

indicated symbolically in or near the circle.

This indicates a warning or caution. The contents are indicated symbolically in or
near the triangle.

O This indicates an obligatory safety precaution. The obligatory operation is

This indicates a note. The contents are described in the box.

% E These indicate that the marked part should be recycled.

MS9710C
Optical Spectrum Analyzer Remote Control
Operation Manual

14 February 1999 (First Edition)

9

July 2007 (Fourth Edition)

Copyright © 1999-2007, ANRITSU CORPORATION.

All rights reserved. No part of this manual may be reproduced without the prior written permission of the
publisher.

The contents of this manual may be changed without prior notice.

Printed in Japan

Notes On Export Management

This product and its manuals may require an Export License/Approval by
the Government of the product's country of origin for re-export from your
country.

Before re-exporting the product or manuals, please contact us to confirm
whether they are export-controlled items or not.

When you dispose of export-controlled items, the products/manuals need to
be broken/shredded so as not to be unlawfully used for military purpose.

About This Manual

This manual explains remote control of the MS9710C optical spectrum analyzer.
You can control the MS9710C and transfer measurement results into the
computer connected to the GPIB/RS-232C interface port of the MS9710C.

Table of Contents

FOP SAEY weoeeemmesssssssssssssssssssssssssssssessssssee
About This Manualccceeeemmeeiiirernirencecennes |

Section 1 Introduction......ccceeeeeicierrrernnnnnnans 1-1

1.1 OVEIVIEW ...ttt e 1-2
1.2 MS9710C Remove Control Functionscc.cuu... 1-2
1.3 Interface Port Application Selection Function 1-2
- 1.4 Examples of Setups Using GPIB/RS-232C 1-3
Section 2 How to Connect S 4 |
2.1 Connecting Devices Using GPIB Cables................... 2-2
2.2 Connecting a Device Using an RS-232C Cable 2-3
Section 3 Standards ST 1) |
3.1 GPIB Standard........ccccovevvrnerceeireieeeeeeee e 3-2
3.2 RS-232C Standardc.ccoeceveeceeveeeeeeenreeeeceeceeenens 3-2
3.3 Device Message List......cccooovrvrvrniniecene e, 3-3
Section 4 Initial Settingcccccvecevevrivcrrccvnee. 4-1
4.1 |Initialization of Bus by IFC Statement........................ 4-4
4.2 |Initialization of Message Exchange by DCL and SDC Bus
ComMmMANGSccoveeieireerereree e 4-6
4.3 Initialization of Devices by *RST Command.............. 4-8
4.4 Device States at Power-oncccccecvvvvreceevernennee. 4-13

Section 5 Listner Input Formats.........ccce... 5-1

5.1 Summary of Listener Input Program Message Syntactical

NOAHION ..ot 5-3
5.2 Program Message Functional Elements..................... 5-8
5.3 Program Data Formatcccceevvenveieceereneerecene, 5-20

Section 6 Talker Output Formatc..... 6-1

6.1 Differences in Syntax between Listener Input Formats

and Talker Output formatsccccceevvrveervensrecieeesnenne 6-3
6.2 Response Message Functional Elements 6-4
Section 7 Common Commands........c..ccuruees 7-1

7.1 Classification of MS9710C-Supported Common Commands

by Group FUNGHONcceeeereiiecireeeeeee e 7-2

7.2 Classification of Supported Commands and
Referencesccooiveeeencrnineecr e 7-2
Section 8 Status Structure...................... e 81
8.1 IEEE 488.2 Standard Status Model. 8-3
8.2 Status Byte (STB) Register.......ccocvvevvirrnrccrnrrennnen. 8-5
8.3 Enablingthe SRQ ... 8-10
8.4 Standard Event Status Registercccccceveevecrennen. 8-12
8.5 Extended Event Status Register........c..ccccceeerrennnen. 8-15
8.6 Queue Modelcceerecencniniriesercer e 8-19

Section 9 Details on Device Messages 9-1

Section 10 Program Examplesceceeeee. 10-1
10.1 Precautions on Creating a Programccccueuene... 10-2
10.2 Program EXamplesccovvveveeeireceeciereeeeeeeeeeeee s 10-3

Section 11 LabVIEW Measuring Instrument 11-1
About LabVIEWcccceimireniererenere e 11-2
11,1 Installation.........cccoceerirecenencre e, 11-2
11.2 Program EXamplesc.ccecceenrvneniennesieseeseeciereeneen, 11-3
11.8 List of Measuring Instrument Drivers 11-5
11.4 Description of Measuring Instrument Driver

FUNCHONS ..o 11-9

© 00N O O WD | =

b | ek
- O

Appendix

fan

V.

Appendix A Error Messagesc.ccccereereneen A-1

A.1 System Errors (000 t0 099)......cccecvrrvvreveeeeesreeereenne. A-2
A.2 Measurement Errors (100 10 199)......cccceeveeevveerenenene. A-2
A.3 Key Operation Errors (200 t0 299).......c..cceevververreennnne A-3
A.4 Device Errors (300 10 499)ccceeceeeeeeeneereerereenene A-5

Appendix B Binary Data Transfer Formats... B-1

Appendix C Comparison Table of GPIB
Commands of Controller C-1

Appendix D Example of Program Used on
PCO801coverrerrerrnnnnsannneas D-1

Appendix E MS9710C and MV02 (MS9703A)
Command Compatibility Table.... E-1

Appendix F MS9710C and HP Optical Spectrum
Analyzer (HP71450A/71451A) Com-
mand Compatibility Table........ F-1

Section 1 Introduction

This section outlines the remote control functions of the MS9710C optical spec-
trum analyzer.

1.1 OVeIVIEW ... 1-2
1.2 MS9710C Remove Control Functions 1-2
1.3 Interface Port Application Selection Function.. 1-2
1.4 Examples of Setups Using GPIB/RS-232C ... 1-3

c
2
L4
(2}
=}
©
o
b o]
bl
£

Section 1 Introduction

1.1 Overview

The MS9710C can make measurements automatically in combination with an

external controller (host computer, personal computer, etc.) To connect an exter-
nal controller, the MS9710C has GPIB interface bus (IEEE Standard 488.2-1987)
and RS-232C interface ports.

1.2 MS9710C Remove Control Functions

The MS9710C supports the following functions.

(€]

@
3
“
(&)
(6)
0]

@®

Control of almost all functions except some functions such as a POWER
switch and LOCAL key

Read of all setting conditions

Setting of the GPIB address from panel

Interrupt function and serial polling (GPIB)

Setting of RS-232C interface conditions from panel
Selection of an interface port application from panel

Configuration of an automatic measurement system by combining the
MS9710C with a personal computer and another measurement instrument

Tracking measurement with the tunable laser source

1.3 Interface Port Application Selection Function

The MS9710C comes standard with a GPIB interface bus and an RS-232C inter-
face. Application of these interface ports can be selected from the panel.

External controller connection port: Select GPIB or RS-232C.
Printer connection port: GPIB

The above two ports cannot be used at the same time.

1.4 Examples of Setups Using GPIB/RS-232C

1.4 Examples of Setups Using GPIB/RS-232C

(1) Standalone type

Waveforms measured with the MS9710C are output to the printer.

MS9710C

(2) Control by host computer

The MS9710C is controlled by a computer automatically/remotely.

O Printer

2C

Computer
MS9710C
GPIB/RS-232C
 —
MG9637A/MG9638A
Computer RS-23
MS9710C
GPIB
—

c
2
L4

o

3
T

o

b]
e
=

Section 1 Introduction

Section 2 How to Connect

This section explains how to connect GPIB and RS-232C cables between the
MS9710C and external devices such as a host computer, personal computer, and
printer. This section also explains how to set the interfaces of the MS9710C.

2.1 Connecting Devices Using GPIB Cables........ 2-2
2.1.1 Setting interface conditions for
the connection port........cccoceeervnennns 2-2 °
2.1.2 Confirming and Setting the Address... 2-2 g
2.2 Connecting a Device Using S
an RS-232C Cableocccvroceerrerssreesne 2-3 o
2.2.1 RS-232C interface signal connection 2
diagrams.......ccceeeeiieeeenee e 2-4 %
2.2.2 Setting interface conditions for I
the connection port.........ccccvveevevcvnnnnne 2-5

2.2.3 Setting RS-232C interface conditions.. 2-5

Section 2 How to Connect

2.1 Connecting Devices Using GPIB Cables

The MS9710C has a GPIB cable connection connector on the back panel. Be sure
to connect GPIB cables before turning on the power.

A maximum of 15 devices, including a controller, can be connected. Connection

conditions are given shown below.

Total cable length <20m
Device-to-device cable length <4 m
Number of connectable devices < 15

2.1.1 Setting interface conditions for the connection port

When controlling the MS9710C automatically/remotely from a computer, set in-
terface conditions for the connection Press the RS-232C Prmtr function key on
the “Others” card to select “GPIB” for “Interface.”

=== RS232C Parameter

PInterface RS232C

Speed(bps) e 4800 2400 1200 600
Pa.nty None Odd

Character Length -+ -+~ TBit

StOp Bit 2Bit

2.1.2 Confirming and Setting the Address

Be sure to set the MS9710C’s GPIB address after turning on the power. The
factory-set address “08” is battery-backed up. If you use this address, the address
need not be set again. If you want to change the address, place the MS9710C in
the local mode, press the GPIB Address function key on the “Others” card, then
enter a new address with keyboard keys or an encoder. Immediately after the
power is turned on, the devices on the GPIB automatically enters the local mode.

2-2

2.2 Connecting a Device Using an RS-232C Cable

Connecting a Device Using an RS-232C Cable

Connect the RS-232C connector (D-sub, 9-pin, male) and the RS-232C connector
with an RS-232C cable.

Back panel oécl\:llsgﬂ 0C
C] External device -
(33
RS-232C e
c
o}
&
RS-232C cable o
3
Note: I

RS-232C connectors are available in 9-pin and 25-pin types. Before pur-
chasing an RS-232C cable, check the number of pins of the RS-232C con-
nector on the external device. The following two types of RS-232C cables
are available as application parts for this analyzer.

*RS-232C cable (for PC98 personal computer)

(MS9710C side) (PC98 personal computer side)
D-sub [|:| Length=1m D-sub
9-pin - 25-pin
Female (Straight) Male

*RS-232C cable (for DOS/V personal computer)

(MS9710C side) (DOS/V personal computer side)
D-sub [D Length=1m D] D-sub
9-pin 9-pin
Female (Cross) Female

Section 2 How to Connect

2.2.1 RS-232C interface signal connection diagrams

The following diagrams show connections of RS-232C interface signals between
the MS9710C and two types of personal computers.

@ Connection with PC98 personal computer

MS9710C PC98 personal
computer
GND GND
CD(NC) 1 =——mmp— L—— 1 GND
RD 2 2 SD
D 3 3 RD
DTR(NC) 4 =—— [,—_——_ 4 RS
GND 5 =—mo ——— 5 CS
DSR(NC) 6 =——m17r 6 DR
RTS 7 — 7 GND
CTS 8 _I 8 CD
RI(NC) 9 =————— ——— 9 NC
— —+— 10 NC
D-sub, 9-pin, female T 11; ﬁgD
—-+— 13 GND
—-—14 GND
—+— 15 ST2
—-+—16 NC.
—-—17 RT
—+—18 NC
—+—19 NC
20 ER
—+—21 NC
—T——22 NC
—-——23 NC
——24 ST1
D-sub, 25-pin, male ———25 NC
@ Connection with DOS/V personal computer
MS9710C DOS/V personal
computer
GND GND
CD(NC) 1 =——7- /——>——(1 CD
RD 2 ></ (2 RD
TD 83 (371D
DTR(NC) 4 =———1 / (4 TDR
GND 5 (5 GND
DSR (NC) 6 =———m—t (6 DSR
RTS 7 =——mj l:-—(7 RTS
CTS 8 = ——(8 CTS
RI(NC) 9 =—— ——(9 RI
D-sub, 9-pin, female D-sub, 9-pin, female

2.2 Connecting a Device Using an RS-232C Cable

2.2.2 Setting interface conditions for the connection port

When controlling the MS9710C automatically/remotely from a computer, set in-
terface conditions for the connection port.

Press the RS-232C Prmtr function key on the “Others” card and select “RS232C”
for “Interface.”

)
(3]
2.2.3 Setting RS-232C interface conditions o
c
Set interface conditions for the RS-232C port of this analyzer so that they match O
the interface conditions of the connected external device. Lo>
]
Pressing the RS-232C Prmntr function key on the “Others” card will bring up the %
following screen. I
===RS232C Parameter
PInterface - GPIB RS232C
Speed(bps) ccciieceee 4800 2400 1200 600
Pal‘ity None E\'Un Odd
Character Length -~~~ 7Bit
Stop Bit « v rerreeeens 2Bit

Using T and { function keys, move the cursor to the item you want to change.

Item Meaning of setting
Speed Select a communication speed among 600, 1200, 2400,
4800, and 9600 bps.
Parity Select a parity bit type.

None... No parity bit is added.
Even... An even parity bit is added.
Odd... An odd parity bit is added.

Stop Bit Select a stop bit type.
l...... 1 stop bit is added.
2., 2 stop bits is added.
Character Length | Select a character length.
T...... 7 bits
8..... 8 bits

Section 2 How to Connect

2-6.

Section 3 Standards

This section explains the MS9710C’s GPIB standard, RS-232C standard, and

device message list.

3.1
3.2
3.3

GPIB Standardcccecoeveereeeeniecneeeeneenens 3-2
RS-232C Standardcccccvrverreceieiinneeenn. 3-2
Device Message Listccccovvneiniiinicinns 3-3
3.3.1 IEEE 488.2 common commands and

the commands supported by

the MS9710Cccvreeeeeeceeeeenes 3-5
3.3.2 Status Messages........ccceveervverrcrcneenne. 3-6
3.3.3 MS9710C device message list............ 3-8

Standards

Section 3 Standards

3.1 GPIB Standard

The standard for the GPIB of the MS9710C is summarized below.

Item

Standard value and description

- Conforms to IEEE 488.2.
Function MS9710C can be controlled from an external controller.
MS9710C can control a printer.

Té:

Interface

L4:

functions

PPO:

CO0:

SH1:

AH1:

SR1:
: All of remote/local functions are supported.

DCi1:
DTO:

All of source handshake functions are supported.

Data send timing is controlled.

All of acceptor handshake functions are supported.

Data receive timing is controlled.

Basic talker functions are supported. A serial port function
is supported.

A talk-only function is not supported. The function of
releasing the talker with MLA is supported.

Basic listener functions are supported. A listen-only func-
tion is not supported. The function of releasing the listener
by MTA is supported.

All of service request/status byte functions are supported.

A local lockout function is supported.

A parallel poll function is not supported.

All of device clear functions are supported.

A disk trigger function is not supported.

A controller function is not supported.

A controller function is performed during external plot output.

3.2 RS-232C Standard

The standard for the RS-232C of the MS9710C is summarized below.

Item Standard value
Function Control from external controller
Communication method Asynchronous (start-stop), half-duplex
Communication control method | No flow control
Baud rate 600, 1200, 2400, 4800, 9600 bps
Data bits 7 bits, 8 bits
Parity Odd parity (ODD), even parity (EVEN),

non-parity (NON)

Start bits 1 bit
Stop bits 1 bit, 2 bits
Connector D-sub 9-pin connector, female

3.3 Device Message List

3.3 Device Message List

Device messages are data messages which are transferred between a controller
and devices. They are classified into program messages and response messages.

Controller

Program messages are ASCII messages transferred from a controller to devices.

Program messages are further classified into program commands and program

queries. These two types of commands are explained on the following pages.

Program commands include device-dependent commands which are exclusively
used for controlling the MS9710C and IEEE 488.2 common commands. IEEE
488.2 common commands are program commands which are commonly appli-
cable to other IEEE 488.2-ready measuring instruments (including the

MS9710C) on the GPIB interface bus.

Program queries are commands used to get response messages from devices. Pro-

gram queries must be transferred from a controller to a device in advance so that

the controller can receive response messages from the device later.

Response messages are ASCII data messages which are transferred from a device

to a controller. Among response messages, status messages and response mes-

sages corresponding to program queries are listed on the following pages.

* Program commands [@ Section 5
* Program queries [@' Section 5
—— ¢ |EEE488.2 common commands @ Section 7

Program message

Device
Response message
\ * Status message [@ Section 8
* Response message [@ Section 6

In program and response messages, numeric data may end with a suffix (unit).

Standards

Section 3 Standards

The above messages are transferred through the device input/output buffer. The
output buffer is also called an output queue. A brief description of the output
buffer is given below.

Input buffer

A FIFO (first in first out) type memory area that stores DABs (program and query
messages) temporarily before analysis of syntax and execution.

The input buffer size of the MS9710C is 256 bytes.

Output queue

An FIFO-type queue memory area. All DABs (response messages) output from
a device to a controller are stored in this memory until they have been read by the
controller.

The output queue size of the MS9710C is 256 bytes.

3.3 Device Message List

3.3.1 IEEE 488.2 common commands and the commands supported
by the MS9710C

The table below lists 39 common commands specified by IEEE 488.2. Among these commands, the commands

supported by the MS9710C are marked with .

Mnemonic Fully spelled out command name Standardized by IEEE 488.2 | Supported by MS9710C

*ADD Accept Address Command Optional

*CAL Calibration Query Optional

*CLS Clear Status Command Required J
*DDT Define Device Trigger Command Optional

*DDT? Define Device Trigger Query Optional

*DLF Disable Listener Function Command Optional

*DMC Define Macro Command Optional

*EMC Enable Macro Command Optional

*EMC? Enable Macro Query Optional

*ESE Standard Event Status Enable Command Required \
*ESE? Standard Event Status Enable Query Required \/
*ESR? Standard Event Status Register Query Required \]
*GMC? Get Macro contents Query Optional

*[DN? Identification Query Required \
*IST? Individual Status Query Optional

*LMC? Learn Macro Query Optional

*[RN? Learn Device Setup Query Optional

*OQPC Operation Complete Command Required 3
*OPC? Operation Complete Query Required \/
*OPT? Option Identification Query Optional \/
*PCB Pass Control Back Command Other than CO: Required

*PMC Purge Macro Command Optional

*PRE Parallel Poll Register Enable Command Optional

*PRE? Parallel Poll Register Enable Query Optional

*PSC Power On Status Clear Command Optional

*PSC? Power On Status Clear Query Optional

*PUD Protected User Data Command Optional

*PUD? Protected User Data Query Optional

*RCL Recall Command Optional

*RDT Resource Description Transfer Command Optional

*RDT? Resource Description Transfer Query Optional

*RST Reset Command Required J
*SAV Save Command Optional

*SRE Service Request Enable Command Required Y
*SRE? Service Request Enable Query Required J
*STB? Read Status Byte Query Required J
*TRG Trigger Command DT1: Required

*TST? Self Test Query Required)
*WAI Wait to Continue Command Required 3

Note:

IEEE 488.2 commands begin with #. For more details, see Section 7.

3-5

Standards

Section 3 Standards

3.3.2 Status Messages

Shown below is the structure of the service request summary message set in the status byte register of the MS9710C.

Summary Bit Configuration of Status Byte Register

Bit | Bit7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Line | DIO8 | DIO7 | DIO6 | DIO5 | DIO4 | DIO3 | DIO2 | DIO1

Summary message bit| Reserved | R [M | ESB MAV ERR END | Reserved | Reserved
Q S
o /___J s
[__ Summary bit from
b_]tﬂo_z_ }1 L T next page ESB (END)
-’s'é'rvTcE Request : |
] | ceneration | |
’/ & ! Summary bit from next
{ of \.________, page ESB (ERROR)
+ corresponding
bits- .
Data
Event Summary Bit | MAV summary bit indicating Data
- —— — —— h i
M Sorvice Request (ESB) the output queue |§ not empty Data
Message Available (MAV) Data
Enable Request :
! . Data
L. bit0ws57 Logical OR Data
Output queue
7 & 7 | Power-on
6 (&) 6 | Userre
&/ qUeSt
5 @ 5 | Command error
4 @~ 4 | Execution error
3 (&) 3 | Device-dependent error
2 @ 2 | Query error
1 @— 1 | Bus control request
0 —@ 0 | Operation complete
Standard event status Standard event status
enable register register

3-6

3.3 Device Message List

To preceding page <—L Logical OR |

END summary bit K J\
E (&) Z Reserved
6 @ | 6 | Reserved
B () 5| Reserved .
4] &) [4| Executon completion 4 e o oo
E @ ? Execution completion g"v;":;:::c;‘)“ 1-point measurement or sweep
> @ 5| Transferend (FD inputioutput or printer output)
EN @ 1| Sweep stop (single sweep stop)
[0 (&) | 0 | Measurement end (e e romert oty
Extended END event Extended END event
status enable register status register
To preceding page <—| Logical OR 1
END summary bit]]
z @ Z Reserved
6 | /& | 6 [Reserved
El —@‘ | 5 | Reserved
[4 | (&) | 4 | Reserved
[3 @ | 3 | Reserved
[2 @ | 2 | Reserved
| 1] @ | 1 | Peak/dip detection error
[0 &) [0] RES_UNCAL error
Extended END event Extended END event
status enable register status register

Section 3 Standards

3.3.3 MS9710C device message list

A list of MS9710C-dependent program commands, program queries, and response messages is shown on the fol-
lowing pages.

MS9710C Device Message List (1/13)

Device message
ltem Data Remarks
Command | requést | Response
Wave- Center CNT A CNT? | A A : Wavelength (nm) 9.14
length A = XXXX.XX A = XXXX.XX
Span SPN A SPN? | A A : Wavelength (nm) 9.74
A = XXXX.X A = XXXX.X
Start STA A STA? A A : Wavelength (nm) 9.78
A = XXXX.X A = XXXX.X
Stop STO A STO? | A A : Wavelength (nm) 9.79
A = XXXX.X A = XXxx.X '
Marker Value | MKV s MKV? | s WL: Wavelength 9.56
W1/Freq s =WL FREQ : Frequency
= FREQ
Value in WDP s WDP? | s s : Wavelength display | 9.93
Vacuunv/Air | s = VACUUM s = VACUUM mode
= AIR = AIR
Level Level Scale LVS? s 9.50
s = LOG Log scale
LIN Linear scale
Log (/div) LOG1 LOG? |1 Unit : dB/div 9.49
1 =xxx 1 =xxx 0.1t0 10.0
Ref Level RLV1 RLV? |1 A, B, A&B : dBm (unit) | 9.70
1 =+xxx 1 =*xx.x 1 =+30t0-90
A-B, B-A, normalize :
dB (unit)
1=+100to -100
Linear LLV1 LLV? 1 1:1pWto1 W (level) | 9.47
10200 %
When unit is omitted :
_ mW, %
Opt Att ATTs ATT? | s 9.8
s = ON, OFF s = ON, OFF

3.3 Device Message List

MS9710C Device Message List (2/13)

Device message

item Command | rJ#&st | Response Remarks
Resolu Res RES n RES? n n : Resolution (nm) 9.69
-tion n: Value shown n = 0.05,0.07,0.1,
on the right 0.2,05,1
Actual Res ARES s ARES? | s 9.7
Off/On s = ON, OFF s = ON, OFF
Actual Res ARED? | AMA A A (nm) 9.6
Value A\ =X.XXX
VBW VBW s VBW? | s s : VBW value 9.91
s : Resolution s = I MHz,
(nm) 100 kHz, ‘When unit is omitted :
10kHz, 1kHz, | Hz
100 Hz, 10 Hz
Average | Point AVTn AVT? | n n : Number of times 9.11
Average n = 2to 1000 n = 2to 1000,
OFF OFF
Sweep AVSn AVS? | n n : Number of times 9.10
Average n = 2to 1000 n = 2to 1000,
OFF OFF
Smooth SMTn SMT? | n n : Number of points 9.72
n : Value shown n=3,5,1709,
on the right 11, OFF
Sampling Points MPT n MPT? | n n : Number of points 9.58
n: Value shown n=>51, 101, 251,
on the right 501, 1001,
2001, 5001
Peak Serch PKS s PKS? m ERR: 9.64
s = PEAK, NEXT, m =PEAK, NEXT, | State other than peak
LAST, LEFT, LAST,LEFT, | search
RIGHT RIGHT, ERR
Dip Search DPS s DPS? | m ERR: 9.28
s = DIP, NEXT, m = DIP, NEXT, State other than dip
LAST, LEFT, LAST, LEFT, search
RIGHT RIGHT, ERR

3-9

Section 3 Standards

MS9710C Device Message List (3/13)

Device message
Item Da Remarks
Command | requést | Response
Analysis | Envelope ANAENV, r ANA? | ENV,r r : Cutlevel (dB) 9.2
r =0.1t020.0 r =0.1t020.0
RMS ANARMS, 1, k ANA? | RMS, 1,k r : Slice level (dB)
r =0.1t030.0 r =0.1t030.0 k: Constant of ko
k=1,2,2353 k=1,2,235,3
ndB-Loss ANAndB, r ANA? | NDB,r r : Attenuation (dB)
r =0.1t050.0 r =0.1t050.0
Threshold ANATHR, r ANA? | THR,r r : Cutlevel (dB)
r =0.1t050.0 r =0.1t050.0
SMSR ANA SMSR, s ANA? [SMSR,s
s = 2NDPEAK s = 2NDPEAK
= LEFT = LEFT
= RIGHT = RIGHT
Spectrum ANAPWR ANA? | PWR
Power
Analysis ANA OFF ANA? | OFF
Off
Analysis | Envelope ANAR? | Ac, AL 9.3
Result Threshold Ac =xxxx.xxx | Ac (nm) or (THz)
RMS A A = XXX.XXX A A (nm) or (THz)
ndB-Loss ANAR? | Ac,AA,n
Ac =xxxx.xxx | Ac (nm) or (THz)
A A = XXX.XXX A A (nm) or (THz)
n: Integer n : Number of axial modes
SMSR ANAR? | AA AL
A A = XXX.XXX A A (nm) or (THz)
Al =xxxx(dB) | Al (dB)
Spectrum ANAR? | p,Ac
Power P =XX.XX P: Power (dBm)
Ac =xxxx.xxx | Ac (nm)or (THz)
Memory Select MSL s MSL? |s 9.59
s=AB s=A,B
Trace Select TSLs TSL? s 9.89
s = A, B,AB, s = A,B,AB,
A_B,B_A A_B,B_A

3-10

3.3 Device Message List

MS9710C Device Message List (4/13)

Device message

item Command | rQii&t | Response Remarks
Save/ Format FMT 941
Recall | File Delete | DELn n: File name 9.23
n: File name
File Option | FOPT a, b, ¢ FOPT? | a,b,c 9.42
a = NONE a = NONE a: Option file
= BMP = BMP specification
=TXT = TXT
= BMP&TXT = BMP&TXT
b = NUMBER b = NUMBER b : File specification
= NAME = NAME method
c=144M c=144M ¢ : FDD mode
=12M =12M ¢ : Omissible
Save SAVn n : File name 9.71
n : File name
Recall RCLn n : File name 9.68
n : File name
Graph Normal DMD NRM DMD? | NRM 9.26
3D DMD 3, m, n DMD? | 3,m,n m: Type
m,n: m=1,2,3 n: Angle
Values shown n = 30, 45, 60,
on the right 90
Normalize DMD NRMZ DMD? | NRMZ
Overlap DMD OVL DMD? | OVL
Max Hold DMD MHL DMD? | MHL
Graph Clear | GCL 943

3-11

Section 3 Standards

MS9710C Device Message List (5/13)

Device message

Item Command re'?ﬁ st Response Remarks
Applica | DFB-LD APDFB, s, n AP? DFB, s, n 9.4
-tion s = 2NDPEAK s = 2NDPEAK
= LEFT =LEFT
= RIGHT = RIGHT
n=1t50 n=1to50 n: n of "ndB Width"
FP-LD APFP n AP? FP,n n : Axial mode cut level
n=1to50 n=1to50
LED APLED, n, p AP? LED, n, p n : n of "ndB Width"
n=1t50 n=1to50
p =-10.00 to p=-10.00to p : Calibration value
+10.00 +10.00 (dB) of total power
PMD APPMD, n AP? PMD, n, m n : Mode coupling factor
n = 0.01 to 1.00 n=0.01to 1.00 | AUTO/MANUAL mode
m= 0: AUTO,
1 : MANUAL
Opt Amp AP AMP AP? AMP 0O.AMP mode setting
Opt Amp APAMP,MSL,s | AP? AMP, MSL, s
Memory s =PIN AMP, s = PIN PN: Pin memory
Select =POUT MSL =POUT POUT: Pout memory
O.Amp APAMP,CAL,n | AP? AMP, CAL, m
Res Cal n= AMP, m=0: RES
0: RESCAL CAL calibration
INITIAL complete
1: RESCAL 1: Insufficient
optical level
2: Other faults

3-12

3.3 Device Message List

MS9710C Device Message List (6/13)

Device message

Function Command re%?.utgst Response Remarks
Applica | O.Amp AP AMP, PRM, AP? AMP, PRM, 9.4
-tion Parameter a,b,c,de, AMP, | a,b,c,d,e,’
f,g, hi,j,k PRM f,g hi,j,k
a=0:S-ASE, 1: Total a : NF Calculation
b =0: SpectDiv Off, 1 : On | b : NF Measurement method
2 : PlznNull Method
3 : Pulse Method
4 : WDM Measure
¢ = 0: Gauss, 1 : Mean ¢ : Fitting Method
d: Fit Span d : Fitting Span :0.10 to 100.00 nm
e : Mask Span e : Masked Span : 0.10 to 100.00 nm
f : PinLoss f : Pin Loss :-10.00 to 10.00 dB
g: Pout Loss g : Pout Loss :=10.00 to 10.00 dB
h: NF Cal h : NF Cal :0.100 to 10.000
i : O.BPFLCal i : O.BPF Level CaL : 0.00 to 30.00 dB
j : O.BPFBW j : O.BPFBW :0.01 t0 999.99 nm
k: Pol Loss k : Pol Loss :-10.00 to 10.00 dB
Pout—Pase | APAMP, ASE
Off AP OFF AP? OFF
WDM APWDM AP? AP WDM,m Display Mode is previ-
m= "MPK", ous condition, MPK,
"SNR", SNR, REL mean Multi
"REL" Peak, SNR, and Relative
displays, respectively.
WDM APWDM, SLV,s | AP?WDM, | APWDM, SLV,s | S is splice level.
S. Level s=1t050 SLV s =1t050
WDM AP WDM, MPK AP?WDM, | (AP, WDM, In this case only, same
Multi Peak MPK MPK) result at AP?
WDM SNR AP WDM, AP?WDM, | AP WDM, d s the Dip detection direc-
SNR,d, A A, S SNR SNR, d, AL tion, A A is the detection
d ="HIGHER", d ="HIGHER", position in 0.01 nm steps;
"LEFT", "LEFT", at A A = OFF or 0, detects
"RIGHT" "RIGHT" dip in direction set at d.
= AVERAGE = AVERAGE
AX=0.01to AL =001to s is ON/OFF of normaliz-
20.00, "OFF" 20.00, "OFF" | ing noise with the effec-
s = ON s =ON tive resolution.
= OFF OFF
WDM APWDM, REL,r | AP?WDM, | APWDM, REL, r | ris the reference peak
Relative r=1t050 REL r=1t050 number

3-13

Section 3 Standards

MS9710C Device Message List (7/13)

. Device message
Function Data Remarks
Command | requést Response
Applica- | WDM Table | AP WDM, AP? WDM, TBL,d | d is the Dip detection 9.4
tion TBL, d, A\, s WDM, AM, s direction.

d = HIGHER TBL s = HIGHER A is the detection posi-
= LEFT = LEFT tion in 0.01 nm steps; at
= RIGHT = RIGHT A = OFF or 0, detects
= AVERAGE = AVERAGE | Dip in the specified

Al=0.01 to AL = 0.01 to direction.

20.00, OFF 20.00, OFF | s is ON/OFF of normal-

s =ON s =ON izing noise with the
= OFF = OFF effective resolution.

WDM Peak | APWDM, PKT,t | AP? WDM, PKT, t
Type t = PEAK WDM, t =PEAK
= THRESHOLD |PKT =THRESHOLD
WDM AP WDM, AP? WDM, TCL, u u: Cut level (dB)
Threshold TCL,u WDM, u =0.1t050.0
Cue Level u=0.1t50.0 |TCL SMSR, BW ndb,
Applica | DFB-LD APR? Ap,Lp,Asm, Wavelength 9.5
-tion L sm, MOFS, *rdk RE% nm
Result STBW, CNTOFS | Level
FWHM, A m, ** %% dBm (dB)
FP-LD APR? A p, Lp, MODO,
MSPC, POW
A fwhm, A ndb,
LED APR? FWHM, BW
ndb, A p, L p,
PK dens, POW
MPKC, d
Peak Count APR? [d=0to50 d : Number of
MPKC | At, A 1st, Alast, multipeaks
PMD APR? | PK count At:(fs)
Two digits below deci-
G, NF, A sig, mal point
O.AMP APR? | Lase, RES NF : ** ** dB

3-14

3.3 Device Message List

MS9710C Device Message List (8/13)

. Device message
Function Data Remarks
Command | requést| Response
Applica | WDM APR? |[n,A1,L1,A2, n is the number of peaks, 9.5
-tion (analysis | L2... A x is the wavelength of peak
Result results- X,
link Lx is the level of peak x.
obtained) When there is no peak,
n=0.
n, A 1,L1, S1, dl, | nis the number of peaks,
A2,L2,82,d2.. |Axisthe wavelength of peak x,
Lx is the level of peak x,
dx = "LEFT", Sx is the SNR value for peak x,
"RIGHT" | dx indicates whether the dip
of peak x is left or right.
n,Rn, A 1, SP1, |nisthe number of peaks,
R A 1,L1,RLI, A | Rn is the reference peak
2,SP2,R A 2, L2, | number,
RL2... A x is the wavelength,
SPx is the spacing of peak x,
RAx is the relative wavelength
of peak x,
Lx is the level of peak x,
RLx is relative level of peak x.
When there is no peak,
n=0.
n,A 1, f1, L1, S1, | nis the number of peaks, Ax
dl, SP1, SPfl, A |is the wavelength of the peak
2,2,12,82,d2, |x,fxisthe frequency of the
SP2, SPf2... | peak x, Lx is the wavelength

of the peak x, Sx is the SNR
value for the peak x, dx is the
spacing of the peak x, and
Spfx is the spacing frequency
of the peak x.

3-15

Section 3 Standards

MS9710C Device Message List (9/13)

. Device message
Function D Remarks
Command | requdst | Response
Applica | WDM APR? | MPKC, n n is the number of 9.5
-tion Peak Count MPKC | n=0to50 peaks
Result WDM APR? WDM, MPK, X, | Finds the wavelength
Multi Peak WDM, | L and level of peak x.
MPK, x | A= XXXX.XXX, ‘When there is no data
x=11t0 50 [L= xxxxx.Xxx for peak number x,
A=-1and L =-999.99
WDM APR? | WDM, SNR, A, | Peak No. x
SNR WDM, |[L,S,d A is wavelength,
SNR, X | A= XXXX.XXX, Lis level,
x=1 t0 50 | L = XXXXX.XX, Sis SNR, and
S = XXX.XX, d is Dip level detection
d = "LEFT", direction.
"RIGHT", ERR is displayed when
"ERR" there is no peak.
When there is no data
for peak number x,
A=-1and L =-999.99
WDM APR? |t dB units, —-999.00 when
Gain Varia- WDM, no peak
tion SNR,
GAV
WDM APR? | WDM, REL, A, | Peak No. x
Relative WDM, | SBRA,L RL SP is spacing,
REL, x A is wavelength,
x=1 to 50 R A is relative wave-
length,
Lis level,
RL is relative level.
When there is no data
for peak number X,
A =-1and L =999.99
WDM Table APR? | WDM, TBL, A, | fof Peak No.x is fre-
wDbM, | f,L,S,d,SP, quency. SPfis spacing
TBL,x | SPf frequency. Others are
f = XXX.XXXX the same as SNR.
SPf = xxx.x f unit is (THz).
SPf unit is (GHz).

3-16

3.3 Device Message List

MS9710C Device Message List (10/13)

Device message

Function Command re%?:tgst Response Remarks
Measure | D.range DRG s DRG? | s 9.31
Mode Normal/ s = NORMAL s = NORMAL
High = HIGH = HIGH
Interval ITM s IT™M? s s : Time 9.45
Time s = 0to 99MIN s = 0to 99MIN | When omitted : sec
0 to 99SEC 0 to 99SEC
Moduration | MDM s MDM? | s 9.51
Mode s = NORMAL s = NORMAL | Normal
= TRIGGER = TRIGGER | EXT trigger
TLS External TDL n TDL? n n: Time (ms) 9.80
Tracking | Trigger n = 0 to 5000000 n = 0 to 5000000
Delay Time
TLS TLSTs TLST? | s 9.85
Tracking s = On/Off s = On/Off
Adjust to TLSAn TLSA? | n= 9.84
TLS n= 0: Calibration
0: Stop finished,
calibration, 1 : Calibrating,
1 : Calibrate 2 : Calibration
abnormal,
3 : Uncalibrated
Power PWR A PWR? | A 9.65
Monitor A =632.8,850.0 | A: Wavelength (nm)
Power 1300.0,1550.0
Monitor PWRR? | P1 P1 : Power value (dBm) | 9.67
Result Pl = #xx.xx
Spectrum SPC 9.73
Mode Set
Title Title TTL TTL? | Character string | 30 characters 9.90
‘character string’
Title Erase TER 9.82

3-17

Section 3 Standards

MS9710C Device Message List (11/13)

Device message

frem Command | r&d&&st | Response Remarks
Calibra- | WI-Offset WOFS n WOFS? | n 9.94
tion n = xx.x Offset wavelength (nm)
Wi- WCALn WCAL? | m W-CALLEXT.LIGHT 9.92
Calibration n =0: W-CAL m = 0: Calibration
INITIAL complete W-CAL2;REFLIGHT
1: W-CALI 1: During
2: W-CAL2 calibration
3: Forced end 2: Insufficient
optical level
3: Other faults
Auto ALIN n ALIN? | m 9.1
Alignment n =0: ALIGN m = 0: Calibration
INITIAL complete
1: ALIGN 1: During
2: Forced end processing
2: Insufficient
optical level
3: Other faults
Lv1-Offset LOFS n LOFS? | n n: Offset value (dB) 9.48
n= *xXXXX n = XXX X -30to +30
Res Cal R CALn RCAL? | m 9.66
n = 0: INITIAL m = 0: Initial
=1: EXCUTE 1: Ended nomally
2: Excuting
3: Ended
abnormally
Condi- Save CSAV n n: Save memory No. 9.17
tion n=1t}5
Recall CRCLn yy, mm, dd n: Recall memory No. | 9.16
n=0t5 0: Init
Time & | Date DATE yy, mm, DATE? | hh, mi yy: 00to 99 9.18
Date dd s mm: 01 to 12
Set Time TIME hh, mi TIME? | s = ON, OFF dd: 01to31 9.83
Time & Date | TDSPs TDSP? | R,G,B hh: 00 to 23 9.81
On/Off s = ON, OFF mi: 00 to 59
Display Color LCDPR,G,B LCD?P | n P: Screen No. (0 to 10) 9.46
n=1t20,0 RGB: 0to 7
Auto Backlight BKLn BKL? | s n: Time (min) until 9.12
n= 1t020,0 s = ON, OFF light is turned off
Buzzer BUZs BUZ? 9.13
s = ON, OFF

3-18

3.3 Device Message List

MS9710C Device Message List (12/13)

Device message
Item Da Remarks
Command requést | Response
Marker | Trace Marker | TMK A TMK? | A,1 A : Wavelength (nm) or | 9.87
A = XXXX.XXXX A = XXXX.XXXX (THz)
A = xxxx (dBm,dB)|{ 1 : Level
= Four signifi cant dBm, dB, *W, %
digits (*W, %)
AMarker DMK A DMK? | AA, Al AM : Difference in 9.27
A = XXXX.XXXX AL = XXXX.XXXX wavelength (nm)
Al = xx.xx (dB) or (THz)
= XXX.XXX Al : Difference in level
Log dB, no linear unit
Wl Marker A| MKAA MKA? | A A Wavelength (nm) or 9.52
B | MKB A MKB? | A (THz) 9.53
A = XXXX.XXXX A= xxxx.xXxx
Lvl Marker C | MKC'1 MKC? |1 1: Level 9.54
D| MKD1 MKD? | 1 dBm, dB, *W, % 9.55
1 : Valueshown 1 = xxxxx (dBm, dB)
on the right = Seven significant
digits (*W, %)
Marker Off | EMK 9.32
Zone Zone Marker | ZMK WL, ZMK? | WL, Ac, As Ac, As : Unit (nm) 9.96
Marker Ac, As WL
AC = XXXX.XXX AC = XXXX.XXX Ac: Zone center
AS = XXXX.XXX As = XXxx.XXxx | As: Zone span
Zone—Span | ZMK SPN
Zoom ZMK ZOOM, s ZMK? | ZOOM, s
In/Out s =IN ZOOM | s =IN
=0OUT =0UT
Zone Marker | ZMK ERS
Erase
Sweep Single SSI 9.76
Repeat SRT 9.75
Stop SST 9.59
Auto Measurement AUT AUT? | n 9.9
n = 0: Measurement
end
= 1: During
measurement
Light Output OPT's OPT? |s Option 9.60
s = ON, OFF s = ON, OFF

3-19

Section 3 Standards

MS9710C Device Message List (13/13)

Device message

ftem Command e Response Remarks
Peak—Center PKC 9.62
TMkr—Center T™C 9.86
Peak—Level PKL 9.63
Internal | Copy CPY 9.15
Printer Feed FED n n = Number of 9.40
n=0to25 character lines
Memory | Data d+Terminator DMA? (memory A) | Log scale Log: Unit (dBm) 9.24
Data DMB? (memory B) | +xxx.xx 9.25
d+Separator DQA? (memory A) | Liner scale Linear: Unit (mW) | 9.29
DQB? (memory B) | X.xXxXE £x 9.30
Binary DBA? (memory A) | LOG: 2 bytes /1 data | LOG: x0.01 (dBm) 9.19
DBB? (memory B) | Linear: 4 bytes/l data| Linear: x0.0001 (mW) | 9.20
Data DCA? (memoryA) | Al,A,2,n A1, A2: Unit (mn) 9.21
Condition DCB? (memory B) | Al = xxxx.xx Al: Start wavelength | 9.22
A2 = XXXX.XX A2: Stop wavelength
n =2511t05001| n: Measuring point
Measurement Status MOD? n 9.57
n=0: No
measurement
of spectrum
n = 1: Single sweep
of spectrum
n = 2: Repeat sweep
of spectrum
n = 3: Power
monitor
Terminater TRM 0 TRM? 0 0 =LF, EOI 9.88
TRM 1 1 1 = CR, LF, EOI
Header HEAD ON 9.44
HEAD OFF
Error ERR? n n: Error No. 9.33
n = XXX
Extended ESR1? n n: Register value | 9.37
Event Status ESR2? n 0to 255 9.38
Register ESR3? n 9.39
Extended ESEln ESE1? n n: Register value | 9.34
Event Status ESE2n ESE2? n 0to 255 9.35
Enable Register ESE3 n ESE3? n 9.36

3-20.

Section 4 Initial Setting

The GPIB interface system is initialized at three levels. Atlevel 1, “bus initializa-
tion” is performed to place the system bus in the idle state. At level 2, “message
exchange initialization” is performed to enable devices to receive program mes-
sages. Atlevel 3, “device initialization” is performed to initialize device-depen-
dent functions.

At these three initialization levels, preparations are made for starting devices.

4.1 |Initialization of Bus by IFC Statement............. 4-4
4.2 Initialization of Message Exchange by

DCL and SDC Bus Commands 4-6
4.3 Initialization of Devices by *RST Command.. 4-8
4.4 Device States at Power-oncccceccevvevennnne 4-13

o
[=
£
)]
»
s
£

4-1

Section 4 Initial Setting

E 488.1 defined the following two levels of GPIB system initialization.

Initialization of bus:
Interface functions of all devices connected to the bus are initialized by an IFC
message from the controller.

Initialization of devices:

All devices on the GPIB are initialized with a GPIB bus command “DCL”, or
only the specified devices are initialized to their specified states with a GPIB bus
command “SDC.”

IEEE 488.2 defines three levels. At level 1, “bus initialization™ is performed.
This is the highest level. “Device initialization” is divided into “message ex-
change initialization” (level 2) and “device initialization” (level 3). IEEE 488.2
also defines the device power-on status.

The following table provides a summary of the above explanation.

Level

Initialization type

Overview

Combination and priority of levels

Bus initialization

Interface functions of all devices connect-
ed to the bus are initialized by an IFC
message from a controller.

This level may be combined with
other levels. However, initializa-
tion at level 1 must be performed
before initialization at other lev-
els.

Message exchange
initialization

Message exchange is initialized and the
function of reporting completion of opera-
tion to the controller is disabled. This ini-
tialization can be ferformed either for all
devices on the GPIB using GPIB bus com-
mand DCL, or only for the specified
devices using a GPIB bus command SDC.

This level may be combined
withother levels. However, ini-
tialization at level 2 must be per-
formed before initialization at

level 3.

Device initialization

Only the specified devices on the GPIB
are initialized to the known states with an
*RST command irrespective of the past
use state.

This level may be combined with
other levels. However, initializa-
tion at level 3 must be performed

after initialization at levels 1 and 3.

‘When controlled from a controller via the RS-232C interface port, the MS9710C
can use the “device initialization” function (level 3). However, it cannot use “bus

initialization” (level 1) and “message exchange initialization” (level 2) functions.
When controlled from a controller via a GPIB interface bus, the MS9710C can
use all the above initialization functions (levels 1 to 3).

Let’s take a look at the commands for performing initialization at levels 1 to 3 and

the items to be initialized as well as the known states set at power-on.

4-3

(=]
c
£
3
)
s
£

IFC @

4.1 Initialization of Bus by IFC Statement

B Format

IFCA@select-code

B Application example

B Explanation

4-4

IFC @1

This function can be used when the MS9710C is controlled from a controller via
a GPIB interface bus.

On the GPIB corresponding to the specified select code, the IFC line is activated

for about 100 us (electrically set at the low level). When IFC@ is executed,

interface functions of all devices connected to the GPIB bus line corresponding to

the specified select code are initialized. Only the system controller can send this

command.

“Initialization of interface functions” refers to the processing in which controller-

set device interface functions (talker, listener, etc.) are reset to their initial states.

Functions marked with \ in the following table are initialized. The function

marked with A is initialized partially.

No Function Symbol Initialization by IFC
1 Source handshake SH \/
2 Acceptor handshake AH \
3 Talker or extended talker Tor TE \/
4 Listener or extended listener LorLT \/
5 Service request SR A
6 Remote/local RL
7 Parallel/poll PP
8 Device clear DC
9 Device trigger DT
10 Controller C \/

If the IFC statement is true (the IFC line is set at the low level through execution

of the IFC@ statement), initialization is not performed at levels 2 and 3. That s,

device operating states are not affected.

4.1 Initialization of Bus by IFC Statement

Let’s take a look at some device states set by the IFC statement.

(1) Talker/listener:

@)

©)

(4)

(5)

All talkers and listeners are set in the idle state (TIDS, LIDS) within 100 ps.

Controller:

If the controller is not active (SACS: System control Active State), it enters
the idle state “CIDS” (Controller IDle State) within 100 ps.

Return of control right:

If the system controller (the first device on the GPIB which is used as a
controller) has granted the control right to another device when IFC@ is
executed, the control right is returned to the system controller. Generally,
pressing the [RESET] key on the system controller allows an IFC message
to be output from the system controller.

Devices issuing service request:

The state in which an SRQ message is issued by a device (the SRQ line is set
at the low level by the device) is not canceled, but the state in which all
devices on the system bus are placed in the serial poll mode by the controller
is canceled.

Devices in remote state:

For the devices currently in the remote state, the remote state is not canceled
by the IFC message.

4-5

o
c
£
<))
)
S
£

DCL @

4.2 Initialization of Message Exchange by DCL and
SDC Bus Commands

B Format

DCLA@select-code[primary-address][secondary-address]

B Application example

DCL@1 Initializes message exchange for all devices on the bus.
(Issue of DCL)

DCL@103 Initializes message exchange only for the device at address 3.
(Issue of SDC)

H Explanation

This function can be used when the MS9710C is controlled by a controller via the
GPIB interface bus.

This statement initializes message exchange for all device on the GPIB corre-
sponding to the specified select code or only for the specified devices.

The purpose of message exchange is to allow the controller to send new com-
mands when the controller cannot control message-exchange-related parts inside
the devices due to execution of programs although it is not necessary to change
the panel settings.

B When only a select code is specified

Message exchange is initialized for all the devices on the GPIB corresponding to
the specified select code. DCL@ issues a DCL (Device Clear) bus command to
the GPIB.

B When an address is also specified

Message exchange is initialized only for the specified device. Listeners on the
GPIB corresponding to the specified select code are canceled, only the specified
device is set as a listener, and an SDC (Selected Device Clear) bus command is
issued.

B Items subject to initialization of message exchange

(1) Input buffer and output queue:

Cleared.

(2) Syntax analysis, execution control, and response generation
parts:

Reset

4-6

4.2 Initialization of Message Exchange by DCL and SDC Bus Commands

@)

(@)

(5)

(6)

@

®)

Device commands including *RST:

All commands interfering with execution of these commands are cleared.

Paired parameter/program message:

All commands and queries whose execution has been suspended due to
paired parameters are discarded.

*OPC command processing:

The specified device is set in the OCIS (Operating Complete Command Idle
State). The operation complete bit cannot be set in the standard event status
register.

([@ Section 7)
*OPC? query processing:

The specified device is set in the OCIS (Operating Complete Command Idle
State). The operation complete bit cannot be set in the output queue. The
MAV bit is cleared.

([I=" Section 7)

Automatic system configuration:

*ADD and *DFL common commands are invalidated. (The MS9710C does
not support these commands.)

Device function:

All parts related to message exchange are set in the idle state. The device
waits for a message from the controller.

The following operations are prohibited.

M
@
©)
“

Changing the current device settings and stored data
Interrupting front panel I/O
Changing status bits other than the MAV bit when clearing the output queue

Affecting or interrupting the device operation currently being performed

B Orders of issue of GPIB bus commands using DCL@ statements
Orders of issue of GPIB bus commands using DCL@ statements are summarized

below.

Bus command issue order Data
(ATN line: Low level) (ATN line: High level)

Statement

DCL @ select-code UNL, DCL

DCL @ device- UNL, LISTEN address,
number [secondary-address], SDC

*RST

4.3 Initialization of Devices by *RST Command

Format

*RST

Application example
WRITE @103:"*RST"
Only the device at address 3 is initialized at level 3.

Explanation

The *RST(Reset) command, an IEEE 488.2 common command, is used to reset a
specified device at level 3.

Generally, devices are set in various states using device-dependent commands
(device messages). Among these commands, the *RST command is used to re-
produce a known state of a device. Completion of device operation is invalidated
like level 2.

Specification of device number in WRITE @ statement
The device at the specified address is initialized at level 3.

Iltems subject to device initialization
(1) Device-dependent functions and states:
The specified device is set in a known state irrespective of its history.
(See the lists on the following pages.)
(2) *OPC command processing:

The specified device is set in the OCIS (Operation Complete Command Idle
State). The operation complete bit cannot be set in the standard event status

register. ([Section 7)
(3) =OPC? query processing:

The specified device is set in the OCIS (Operating Complete Command Idle
State). The operation complete bit cannot be set in the output queue. The
MAV bit is cleared. ([[=~ Section 7)

(4) Macro command:

Macro operation is disabled, setting the state in which macro commands
cannot be accepted. The designer can show macro definitions.

4.3 Initialization of Devices by *RST Command

Notes:

*RST command does not affect the following items.
IEEE 488.1 interface state

Device address

Output queue

Service request enable register

Standard event status enable register
Power-on-status-clear flag setting

Calibration data affecting device standard
RS-232C interface condition

® NN kW

Section 4 Initial Setting

Table 4-1 lists MS9710C-dependent initial settings.
The “Set condition” column lists device’s initial states set by the *RST command. In the “Battery backup” column,
items battery-backed-up after power-off are marked with V.

Table 4-1 MS9710C-dependent initial settings (1/3)

Item group Item Set condition Battery backup

Wavelength Center 1350 nm v
Span 500 nm V

Start 1100 nm v

Stop 1600 nm v

Mkr Value wi v

Value in Air V

Level Scale Scale Log V
Log/div 10 dB/div v

Reference Level +20 dBm v

Linear Level 100 mW v

Att On/Off Off Y

Res/VBW/Avg Res 1.0 nm v
VBW 1 kHz V

Point Avg Off V

Sweep Avg Off v

Smooth Off J

Sampling Points 501 v

Act Res Off V

Peak/Dip Search Status Off)
Analysis Status Off)
Threshold Cut Lvl: 3dB)

ndB Lossnd B:3dB Vv

SMSR Side Mode: 2nd Peak v

Envelope CutLvl: 3dB v

RMS k: 2.35, S.Level: 20 dB v

Save/Recall File Option File Option: None v
File ID: Number)

FDD Mode: 1.44 M)

Graph Status Normal v
3D Type: 1, Angle: 45 deg V

4-10

4.3 Initialization of Devices by *RST Command

Table 4-1

MS9710C-dependent initial settings (2/3)

Item group

Item

Set condition

Battery backup

Application

Status

Off

DFB-LD

ndB Width: 20 dB
Side Mode: 2nd Peak

FP-LD

Mode Cut Lvl: 3 dB

LED

ndB Width: 3 dB
Power Cal: 0 dB

PMD

Auto/Manual: Auto
Mode Cpl Factor: 1
Peak Count: 2

O.Amp

NF Select: S-ASE
Spect Div: On

ASE Fitting: Gauss Fit
Fitting Span: 5 nm
Masked Span: 2 nm
Pin Loss: 0 dB

Pout Loss: 0 dB

NF Cal: 1

O.BPF Lvl Cal: 0 dB
O.BPF BW: 3 nm
Pol Loss: 0 dB

WDM

Display Mode: Multi Peak
Peak S.Level: 30 dB

Dip Prmtr: Higher

Al: Off

RefNo.: 1

Page Top No.: 1

2.2 2 2|2 2 2 2 2 2 2 2 2 2 2| 2 2|2 2|2 (2 2|2

Measure Mode

D.range

Normal

Peak Hold

Off
Gate Time: 1 msec

Ext Trigger

Off
Delay Time: O [isec

Interval Time

Osec

TLS Tracking

Off

2 <2< 2|2 2|2

Power Monitor

Off
Wavelength: 1550 nm

Title

CaL

W1 Offset
Level Offset

0nm
0dB

Others

Printer Prmtr

Device Type: Int
Device Address: 17

Back Light

On
Time: 10 min

2. 2|2 2| 2|

4-11

Section 4 Initial Setting

Table 4-1 MS9710C-dependent initial settings (3/3)

Item group Item Set condition Battery backup
Status Register Service request enable 0 (All inhibited)
register
Standard event status 0 (All inhibited)

enable register

Extended event status 0 (All inhibited)

enable register

4-12

4.4 Device States at Power-on

4.4 Device States at Power-on

When the power is turned on.

¢ Input buffer
* Output queue

)
)]
3
)
5)

(6

The MS9710C is restored to the last power-off state.

The input buffer and output queue are cleared.

Syntax analysis, execution control, and response parts are reset.

The device is set in the OCIS (Operation Complete Command Idle State).

The device is set in the OQIS (Operation Complete Query Command Idle

State).

The MS9710C does not support a *PSC command. So the standard event
status register and standard event status enable register are cleared.

Events are recorded after being cleared.

States (2) to (5) are set except when the power is turned on. The state diagram is
shown below.

pon v dcas

part
e Execution

Clear

control part
* Response

.|* Syntax analysis

generation part

pon v dcas

Reset

pon)

Operation

Complete

oaQis

Operation
Complete
OcCIs

Command

Idle State,

4-13

Sect

ion 4 Initial Setting

ltems not changes at power-on

(1) Address

(2) Associated calibration data

(3) Data and states that change with the responses to the following common

query commands

+[DN? ([I=" Section 7)
*OPT? (=" Section 7)

*PSC? (Not supported by the MS9710C)
*PUD? (Not supported by the MS9710C)
*RDT? (Not supported by the MS9710C)

ltems related to power-on status clear (PSC) flag
When the PSC flag is false, the service request enable register ([@ Sec-
tion 8.3), standard event status enable register ([@ Section 8.4), and paral-
lel poll enable register are not affected.
When the PSC flag is true or the *PSC command has not been executed, the
above registers are not cleared.
(@ The PSC command is not supported by the MS9710C)

ltems that change at power-on

o))
@)
3
]

®

(6)

)

4-14.

Current device function test
Status information
*SAV/+RCLregister (Not supported by the MS9710C)

Macro definition made with a *DDT command
(Not supported by the MS9710C)

Macro definition made with a *DMC command
(Not supported by the MS9710C)

Macro definition made with an * EMC command
(Not supported by the MS9710C)

Address received with a *PCB command (Not supported by the MS9710C)

Section 5 Listner Input Formats

Device messages transferred between the controller and devices are classified
into program messages and response messages. This section explains the formats
of the program messages received by listeners.

5.1 Summary of Listener Input Program Message

Syntactical Notationcccceeeereecieceenreenennn, 5-3
5.1.1 Separator, terminator, and

space before headercccenenene. 5-3
5.1.2 General format of program command

MESSAGE ..ottt 5-5
5.1.3 General format of query message 5-7

5.2 Program Message Functional Elements........ 5-8

5.2.1 <TERMINATED PROGRAM

MESSAGE> ..o, 5-8
5.22 <PROGRAM MESSAGE

TERMINATOR>ccevieerereceecen, 5-9
5.2.3 <white space>cccceeerecciiecreeeeen, 5-11
5.2.4 <PROGRAM MESSAGE->.................. 5-11
5.2.5 <PROGRAM MESSAGE UNIT

SEPARATOR>ccceeirereeeereer 5-12
5.2.6 <PROGRAM MESSAGE UNIT> 5-12
5.2.7 <COMMAND MESSAGE UNIT>/

<QUERY MESSAGE UNIT> 5-13

5.2.8 <COMMAND PROGRAM HEADER>.. 5-14
5.2.9 <QUERY PROGRAM HEADER> 5-17
5.2.10 <PROGRAM HEADER

SEPARATOR> ..o 5-19
5.2.11 <PROGRAM DATA SEPARATOR>... 5-19
5.3 Program Data Formatccceceveevrrneereennnnnne 5-20

5.3.1 <CHARACTER PROGRAM DATA>... 5-21
5.3.2 <DECIMAL NUMERIC PROGRAM

DATA> ..ot 5-22
5.3.3 <SUFFIX PROGRAM DATA> 5-26
5.3.4 <NON-DECIMAL NUMERIC

PROGRAM DATA> ..o 5-29
5.3.5 <STRING PROGRAM DATA> 5-30
5.3.6 <ARBITRARY BLOCK PROGRAM

DATA> ...t 5-31

5.3.7 <EXPRESSION PROGRAM DATA>.. 5-35

5-1

Listner Input Formats

Section 5 Listner Input Formats

A program message is a sequence of program message units. Each unit is a program command or query.

The following figure shows that a program message made by connecting two program messages LOG 10 and RLV
—20 with a program message unit separator is sent from a controller to a device to set the log scale to 10 dB/div and
the reference level to —20 dBm.

. <TERMINATED PROGRAM MESSAGE>
Listener address ~

r N
specification <PROGRAM MESSAGE> <PROGRAM MESSAGE TERMINATOR>
Address15 P A A A

N r N
Listener
(device)

Talker
(controller)

< WRITE @108: " LOG 10 ; RLV =20 " <NL>

<PROGRAM MESSAGE UNIT> <PROGRAM MESSAGE UNIT SEPARATOR> <PROGRAM MESSAGE UNIT> sp <NL>

sp; RLV_-20

LOG
x <white space> H / \ <white space> NL

<COMMAND PROGRAM HEADER> <PROGRAM DATA> <COMMAND PROGRAM HEADER> <PROGRAM DATA>

LOG -20

19 RLV
<PROGRAM HEADER SEPARATOR> <PROGRAM HEADER SEPARATOR>
sp sp

<program mnemonic> <white space> <decimal numeric program data> <suffix program data> <white space>

LOG 10 None

A program message is a sequence of functional elements, the minimum units that can represent functions. In the
above figure, functional elements are indicated by capital characters with them enclosed in < >. Functional elements
are further classified into coding elements which are indicated by lowercase characters with them enclosed in < >.

The chart indicating the route of selection of functional elements is called a functional syntactical chart. The chart
indicating the route of selection of coding elements is called a coding syntactical chart. On the following pages,
program message formats are explained using these functional and coding syntactical charts.

Coding elements indicate coding of the actual bus which is required to send functional element data byte to a device.
Upon receipt of a functional element data byte, the listener checks whether individual elements follow the coding
syntax rules. If they do not follow the rules, the listener causes a command error without regarding the elements as
functional elements.

5.1 Summary of Listener Input Program Message Syntactical Notation

5.1 Summary of Listener Input Program Message
Syntactical Notation

This section gives a general description of program messages functional units ([]g’ Section 5.2) and program
data formats ([]?’ Section 5.3). (Compound commands and common commands are excluded.)

5.1.1 Separator, terminator, and space before header

(1) PROGRAM MESSAGE UNIT SEPARATOR

Link two or more program message units using zero or more spaces and a semicolon.

<Example 1> General format for linking two program message units

<white space>

<Example 2> One space + Semicolon

LOGA10A :RLVA-20 LOG 10 ;RLV -20: Set the log scale to 10 dB/div and the reference level to —20
dBm.

Listner Input Formats

(2) PROGRAM DATA SEPARATOR

When there are two or more pieces of program data, separate two contiguous pieces of program data using zero

Or MOore spaces. a command, and zero or more spaces.

<Example 1> General format for separating two pieces of program data

<white space> <white space>

<Example 2> Comma only <Example 3> Comma + One space

TIMEA10, 15 TIME A10,_A15 Set the times to 10:15.

Section 5 Listner Input Formats

(3) PROGRAM HEADER SEPARATOR
Separate a program header and program data using one space and zero or more spaces.

<Example 1> General format of simple command program header

<white space> <white space>

<Example 2> One space

LLV A1TOmW

(4) PROGRAM MESSAGE TERMINATOR

Add zero or more spaces and one of NL, EOI and a combination of NL and EOI at the end of a program
message.

<General format>

<white space>

(5) Space before header
Zero or more spaces can precede a program header.

<General format>

<white space>

<Example> One space before second program header RLV

LOG A10;;ARLV A-20 Set the log scale to 10 dB/div and the reference level to ~20 dBm.

5.1 Summary of Listener Input Program Message Syntactical Notation

5.1.2 General format of program command message

(1) Message without data specification

O <HR>

HR: COMMAND PROGRAM HEADER

<Examples>
AUT Automatic setting
SSI Single sweep start

(2) Message with integer data

O———— <HR> @ I NR1 7—*
NR1: Integer
<Example>
AVT A 500 Set the point average count to 500.

(8) Message with real number

NR2: Real number

<Example>

CNT A 1305.8 Set the center wavelength to 1305.8 nm.

(4) Message with fixed or arbitrary character string data (data length <12 characters)

Oo— <HR> I @ (character

<Example>
DMD A NRM Set the measurement mode to NORMAL.
MSLAA Select memory A.

Listner Input Formats

Section 5 Listner Input Formats

(5) Message with multiple pieces of program data (first: NR1)

(O
N

O— <HR> I @ NR1 or NR2

()
2/

NR1 or NR2

<Example>

DATE A 96, 10 Set the date to Oct. 10, 1996.

(6) Character-only message that can use all seven ASCII bits

<inserted'>

non single

quote char

O—— <HR>

<inserted">

non single

quote char

<inserted>: A single ASCII code representing a value 27

non-single quote char: A single ASCII code representing a value other than 27

<inserted">: A single ASCII code representing a value 22

non-single quote char: A single ASCII code representing a value other than 22

<Example>

TTL A"ABC" Set a title "ABC."

5-6

5.1 Summary of Listener Input Program Message Syntactical Notation

5.1.3 General format of query message

Add ? at the end of a query program header.

(1) Message without query data specificatibn

O

<HR>

<Example>

CNT? Request output of a center wavelength value.

(2) Message with query data specification

O— <HR> ‘ @ NR1

<Example>

LCD? A1 Inquire about the display color of display screen No.1.

()
N

NR2

Section 5 Listner Input Formats

5.2 Program Message Functional Elements

A device accepts a program message by detecting the terminator added at the end of the program message. Func-
tional elements of the program message is described below.

5.21 <TERMINATED PROGRAM MESSAGE>
<TERMINATED PROGRAM MESSAGE> is defined as follows:

<PROGRAM MESSAGE>
I Referto 5.2.4 I

<TERMINATED PROGRAM MESSAGE> is a data message having all the necessary functional elements to be
sent from a controller to a device.

<PROGRAM
MESSAGE TERMINATOR>
Refer to 5.2.2

To complete transfer of <PROGRAM MESSAGE>, <PROGRAM MESSAGE TERMINATOR> is added at the
end of <PROGRAM MESSAGE>.

<Example> <TERMINATED PROGRAM MESSAGE> for sending two pieces of commands with a
WRITE statement

<TERMINATED PROGRAM MESSAGE>

—A-
Listener address specification <PROGRAM MESSAGE> <PROGRAM MESSAGE TERMINATOR>
Address 3 , A N~/ A —~
Listener WRITE @198 : " CNT 1395.8_; SPN 1000 "_<NL> Talker

Functional elements

5-8

5.2 Program Message Functional Elements

5.2.2 <PROGRAM MESSAGE TERMINATOR>
<PROGRAM MESSAGE TERMINATOR> is defined as follows.

<white space> ’ m
NL AEND
I Refer to 5.2.3 j U
@

<PROGRAM MESSAGE TERMINATOR> terminates a sequence of one or more fixed-length <PROGRAM
MESSAGE UNIT> elements.

NL: Defined as a single ASCII code byte OA (decimal 10). That is, it is an ASCII
control character LF (Line Feed) that moves the printing position down one line.
As printing starts at a new line, it is also called NL (New Line). When sending
<PROGRAM MESSAGE> with a WRITE@ statement, the WRITE@ statement
automatically issues CR/LF. So the CR/LF codes need not be written in the pro-
gram. To generate only the LF code, the following statement must be executed at
the beginning of the program.

TERM IS CHR $ (10)

END: Sets the EOI line, one of GPIB control buses, at the LOW level (TRUE), generat-
ing an EOI signal.

5-9

Section 5 Listner Input Formats

5-10

An EOI ON/OFF statement can be used to control the EOI line. EIO OFF is the
default (the EOI line is not controlled). If the EOI ON statement is executed in
advance, an EOI signal is issued along with the terminator LF when the last byte
of the WRITE @ statement is issued. It is also possible to terminate <PROGRAM
MESSAGE-> using only an END signal without generating an LF code.

Last data byte
DIO — bytet byte n CR LF —
Binary data string Terminator

EOI
EOI signal

The CR code is used to return the printing position to the first character

Note:

position on the same line; however, most listeners ignore it. Some prod-
ucts available on the market uses CR-LF code, so most controllers are
so designed that CR and LF codes are issued in succession.

LF

5.2 Program Message Functional Elements

5.2.3 <white space>

<white space> is defined as follows.

(<white space)

character>

<white space character> is one of ASCII code bytes 00 to 09 and OB to 20 (decimal values O to 9 and 11 to 32).

This range includes ASCII control codes and space signals (except NL). The device does not regard these codes as
ASCII control codes, but it regards them as spaces or skips them.

5.2.4 <PROGRAM MESSAGE>
<PROGRAM MESSAGE-> is defined as follows.

<PROGRAM MESSAGE
UNIT SEPARATOR>
Refer to 5.2.5

<PROGRAM MESSAGE UNIT>
\L Refer t05.2.6 I

<PROGRAM MESSAGE> is zero, a <PROGRAM MESSAGE UNIT> element, or a sequence of <PROGRAM
MESSAGE UNIT> elements. A <PROGRAM MESSAGE UNIT> element is a programming command or data
which is sent from a controller to a device.

A <PROGRAM MESSAGE UNIT SEPARATOR> element is used to separate two or more <PROGRAM MES-
SAGE UNIT> elements.

<Example 1> Program message for setting the center wavelength to 1.3058 um
CNT 1305.8

<Example 2> Program message for setting the span to 1000 nm

<PROGRAM MESSAGE>

A
r N

CNT 13095.8 ; SPN 1000

<PROGRAM MESSAGE UNIT> <PROGRAM MESSAGE UNIT SEPARATOR> <PROGRAM MESSAGE UNIT>

5-11

Section 5 Listner Input Formats

525 <PROGRAM MESSAGE UNIT SEPARATOR>
<PROGRAM MESSAGE UNIT SEPARATOR> is defined as follows.

\L <white space> j @

<white space> is defined as follows.

(<white space character> j

Referto 5.2.3

<PROGRAM MESSAGE UNIT SEPARATOR> divides a sequence of <PROGRAM MESSAGE UNIT> elements
within the <PROGRAM MESSAGE> range.

A device interprets a semicolon (;) as the separator between <PROGRAM MESSAGE UNIT> elements. Accord-
ingly, <white space character> before and after the semicolon are ignored. It should be noted that <white space
character> improves program readability. <white space> following a semicolon is also used as a <white space> for
the next program header. (See <Example 2> on the Section 5.2.4 or Section 5.2.8.)

5.2.6 <PROGRAM MESSAGE UNIT>
<PROGRAM MESSAGE UNIT> is defined as follows:

<COMMAND MESSAGE UNIT>

f— Refer to 5.2.7 ‘I
L <QUERY MESSAGE UNIT> _j

Refer to 5.2.7

<PROGRAM MESSAGE UNIT> is a single command message received by a device.
It consists of <COMMAND MESSAGE UNIT> or <QUERY MESSAGE UNIT>, a single query message.

For details on <COMMAND MESSAGE UNIT> and <QUERY MESSAGE UNIT>, see the next page.

5-12

5.2 Program Message Functional Elements

5.2.7 <COMMAND MESSAGE UNIT>/<QUERY MESSAGE UNIT>
(1) <COMMAND MESSAGE UNIT> is defined as follows.

<PROGRAM
DATA SEPARATOR>
Refer to 5.2.11

<COMMAND
PROGRAM HEADER>
Referto 5.2.8

<PROGRAM
HEADER SEPARATOR>
Refer to 5.2.10

<PROGRAM DATA> [—————%—

<PROGRAM DATA>

—
XXX?_ O, 1000

<COMMAND PROGRAM HEADER> <PROGRAM HEADER SEPARATOR> <PROGRAM DATA SEPARATOR>

(2) <QUERY MESSAGE UNIT> is defined as follows.

<PROGRAM
DATA SEPARATOR>
Refer to 5.2.11

<QUERY
PROGRAM HEADER>
Referto 5.2.9

<PROGRAM
HEADER SEPARATOR>
Referto 5.2.10

<PROGRAM DATA> >

<PROGRAM DATA>

~—
XXX? _9, 501

<QUERY PROGRAM HEADER> <PROGRAM HEADER SEPARATOR> <PROGRAM DATA SEPARATOR>

When a program header <COMMAND MESSAGE UNIT> or <QUERY MESSAGE UNIT> is followed by pro-
gram data, a space is inserted between them. A program header indicates the application, function, and operation of
the program. If a program header is not followed by program data, the program header solely indicates the applica-
tion, function, and operation to be performed in the device.

Among program headers, <COMMAND PROGRAM HEADER> is a control command issued from a controller to
a device and <QUERY PROGRAM HEADER> is a query command that is issued from a controller to a device in
advance so that the controller can receive responses from the device. These headers always end with a query
indicator “7”.

5-13

Section 5 Listner Input Formats

5.2.

8

<COMMAND PROGRAM HEADER> is defined below.
Each header can be followed by <white space>.

<white space>

eV

2

Refer to 5.2.3

<COMMAND PROGRAM HEADER>

L

J

<simple command program header> is defined as follows.

<simple command

program header>

Refer to (1)

<compound command
program header>

Refer to (2)

<common command
program header>

Refer to (3)

Refer to (4)

<program mnemonic>

<compound command program header> is defined as follows.

(

3

C]

5-14

<program mnemonic>
Refer to (4)

@

<program mnemonic>
Refer to (4)

<common command program header> is defined as follows.

_/

<program mnemonic>
Refer to (4)

<program mnemonic> is defined as follows.

<upper/lower

<upper/lower

case alpha>

s

case alpha>

0/

-
.

<digit>

-

5.2 Program Message Functional Elements

B <COMMAND PROGRAM HEADER>

This element indicates the application, function, and operation of the program
data to be executed by the device. When it is not followed by program data, the
header solely indicates the application, function, and operation to be performed in
the device.

The meanings of an application, function, or operation is represented by <pro-
gram mnemonic> which is widely called a mnemonic. Mnemonics and the com-
mand program headers defined in (1) to (3) above are explained below.

B <program mnemonic>

@ <upper/lower case alpha>

® <digit>

®)

A mnemonic begins with an uppercase or lowercase character, which is followed
by an arbitrary combination of characters such as uppercase characters (A to Z) or
lowercase characters (a to z), underline (_), and numeric characters (0 to 9). A
mnemonic can contain a maximum of 12 characters; however, most mnemonics
contain 3 to 4 characters. (No space is inserted between characters.)

One of ASCII code bytes 41 to 5A and 61 to 7A (decimal values 65 to 90 and 97
to 122 = uppercase characters A to Z and lowercase characters a to z). The device
can accept a header irrespective of whether it is represented by uppercase or low-
ercase characters.

One of ASCII code bytes 30 to 39 (decimal values 48 to 57 = characters 0 to 9).

An ASCII code byte, i.e., ASCII code byte SF (decimal value 95 = underline).

B <simple command program header>

The above rules for <program mnemonic> applies. For example, the MS9710C
uses “SSI” as a mnemonic indicating “sweep.” It is also used as a “simple com-
mand program header” which means execution of sweep without program data.
“CNT” is a mnemonic which means a center wavelength; however, it can be used
as a “simple command program header” to set a center wavelength only when it is
provided with the program data indicating a center waveform.

5-15

Section 5 Listner Input Formats

B <compound command program header>

@® Function

® <Example 1>

® <Example 2>

® <Example 3>

<compound command program header> is a command program header that ex-
ecutes a compound function. <program mnemonic> is always preceded by a co-
lon (:) to separate it from <compound command program header>. When only
one <compound command program header> is used, the succeeding colon (:) may
be omitted.

The MS9710C does not support this compound command program header. How-
ever, it is explained here taking into account future extension.

On a complex device, a device command set is organized logically by providing a
compound function instead of limiting the number of unique headers. A hierar-
chical command structure can be handled effectively.

To allow the MS9710C to use all device commands of another model (e.g., model
MSXXXX), the compound program header would be
‘MSXXXX

To allow the MS9710C to use a WXYZ device command of another model (e.g.,
model MSXXXX), the compound program header would be

MSXXXX:WXYZ or :MSXXXX:WXYZ
The name of a white buck rabbit living in a FOREST is WHITE.

The name of a white doe rabbit living in a GROVE is WHITE, too. If only
WHITE is used as a command, we cannot distinguish between the above rabbits.

FOREST:WHITE or :FOREST:WHITE White buck rabbit
GROVE:WHITE or :GROVE:WHITE............. White doe rabbit

B <common command program header>

® <Example>

5-16

An asterisk (*) is always added before <program mnemonic> of <common com-
mand program header>. “Common” means that this command is a program com-
mand which commonly used for other IEEE 488.2-ready measuring instruments
connected to the bus.

To idle completion of operation of the device at address 8, which is connected to
the GPIB interface corresponding to select code 1, and restore devices to their
initial states, the following common command is used:

WRITE @108:"«RST" The character string enclosed with quotation marks
(" ")is an IEEE 488.2 common command *RST for
executing the above processing.

5.2 Program Message Functional Elements

5.2.9 <QUERY PROGRAM HEADER>

<QUERY PROGRAM HEADER> is defined as follows:
<white space> may be written before each header.

1

<white space>
Referto 5.2.3

<simple query

J

program header>
Refer to (1)

<compound query

—| program header>

Refer to (2)

<common query

— program header>

(1) <simple query program header> is defined as follows:

<program mnemonic>
Refer to (4) of 5.2.8

Refer to (3)

(2) <compound query program header> is defined as follows:

L

\/

<program mnemonic>
Refer to (4) of 5.2.8

()
N

<program mnemonic>
Refer to (4) of 5.2.8

(3) <common query program header> is defined as follows:

_/

<program mnemonic>
Refer to (4) of 5.2.8

()
N

5-17

Section 5 Listner Input Formats

B <QUERY PROGRAM HEADER>

<QUERY PROGRAM HEADER> is a query command which is sent from a con-
troller to a device in advance so that the controller can receive response messages
from the device. This header always ends with a query indicator “?”. It is ex-
plained below using examples of programs.

ﬂ:? The format of <QUERY PROGRAM HEADER> is the same as that of

<COMMAND PROGRAM HEADER> with the exception that a query indicator
“?” is added at the end. See Section 5.2.8.

® <Example 1> Setting and reading a center wavelength

Line 10:

Line 20:‘

Line 30:

Line 40:

10 WRITE @108:"CNT 1000"

20 WRITE @108:"CNT?"!oeevrerrneae Query message CNT?
30 READ @108:A

40 PRINT A;"nm"

A command header CNT for setting a center wavelength and a program message
consisting of program data 1. 1000 nm is set for the device.

A program message that requires the device to send the set 1000 nm to the con-
troller. A query header “CNT?” is used.

The listener device MS9710C that received the query header “CNT?” from the
controller becomes a talker. The device is a controller that has become a listener,
and it sends a response message 1000 in response to CNT?. The listener reads the
response message into the numeric variable A.

The wavelength “1000 nm” is displayed on the CRT. However, if HEAD ON is
specified with a HEAD command, “CNT 1000 is sent.

® <Example2> Reading measurement dataon 501 measuring points from memory A and printing the measurementdata

Line 100:

Line 120:

5-18

100 WRITE @108:'DMA?"
110 FOR K=0 TO 500

120 READ @108:DT(K)
130 PRINT DT(K);"dBm"
140 NEXT

150 END

A query message “DMA?” is sent to the listener to store 501 pieces of data, start-
ing at address 0.

Line 100 causes the device to reply, response messages at points 0 to 500 are sent
to the controller, and they are read into a numeric array variable DT (K).

5.2 Program Message Functional Elements

5.2.10 <PROGRAM HEADER SEPARATOR>
<PROGRAM HEADER SEPARATOR> is defined as follows.

<white space>
Referto 5.2.3

<PROGRAM HEADER SEPARATOR> is used as the separator between <COMMAND PROGRAM HEADER>
(or <QUERY PROGRAM HEADER>) and <PROGRAM DATA>.

‘When there are two or more <white space character> elements between the program header and the program data,
the first <white space character> is interpreted as a separator and the remaining <white space character> is ignored.
It should be noted that <white space character> improves program readability.

That is, at least one header separator must exist between the header and the data. It indicates both the end of the
program header and the beginning of the program data.

5.2.11 <PROGRAM DATA SEPARATOR>
<PROGRAM DATA SEPARATOR> is defined as follows.

<white space> <white space>
i Referto 5.2.3 f w \L Referto 5.2.3 [

When <COMMAND PROGRAM HEADER> or <QUERY PROGRAM HEADER> has many parameters, <PRO-
GRAM DATA SEPARATOR> is used to separate them.

When this data separator is used, a comma is mandatory but <white space character> is omissible. The <white space
character> before a comma and the <white space character> after a comma are ignored. It should be noted that
<white space character> improves program readability.

<PROGRAM DATA>

f_—g_\
XXX_O,-1000

<COMMAND PROGRAM HEADER> <PROGRAM HEADER SEPARATOR> <PROGRAM DATA SEPARATOR>

5-19

Section 5 Listner Input Formats

5.3 Program Data Format

This section explains the format of the <PROGRAM DATA> shown in the functional syntactical charts
([@ Section 5.2.7), which is one of terminated pr-ogram message formats.

The functional element <PROGRAM DATA> is used to transfer various types of parameters related to the program
header. Program data types are shown below. The MS9710C accepts the program data shown in the hollow squares
surrounded by a shade. For the program data not supported by the MS9710C, read this section just for reference.

<CHARACTER
PROGRAM DATA

<DECIMAL NUMERI
PROGRAM DATA>
Referto 5.3.2

<SUFFIX
PROGRAM DATA>
Ref

<NON-DECIMAL
NUMERIC
PROGRAM DATA>

<STRING

<ARBITRARY
BLOCK
PROGRAM DATA>

<EXPRESSION
PROGRAM DATA>

5-20

5.3 Program Data Format

5.3.1 <CHARACTER PROGRAM DATA>

The functional element <CHARACTER PROGRAM DATA> is used to perform remote control by transferring
short alphabetic or alphanumeric data. It is defined as follows.

<program mnemonic>

Details on character data are the same as those on program mnemonics. So far, we discussed control data focusing

on numeric data. However, program data can also be used to perform control. A coding syntactical chart is as

follows.

<upper/lower

case alpha>

<upper/lower

® <upper/lower case alpha>

® <digit>

® Q)

=al
—

<digit>

Data always begins with an uppercase or lowercase character, which is followed
by an arbitrary combination of characters such as uppercase characters (A to Z) or
lowercase characters (a to z), underline (_), and numeric characters (0 to 9). Since
combinations of alphanumeric characters are used as mnemonic-like symbols, the
maximum data length is 12 characters.

One of ASCII code bytes 41 to 5A and 61 to 7A (decimal values 65 to 90 and 97
to 122 = uppercase characters A to Z and lowercase characters a to z). The device
can accept a header irrespective of whether it is represented by uppercase or low-
ercase characters.

One of ASCII code bytes 30 to 39 (decimal values 48 to 57 = characters O to 9).

A single ASCII code byte, i.e., ASCII code byte 5F (decimal value 95 = under-
line).

Therefore, <CHARACTER PROGRAM DATA> is program data used to transfer relatively short mnemonic-type

alphanumeric codes.

5-21

Section 5 Listner Input Formats

5.3.2 <DECIMAL NUMERIC PROGRAM DATA>

<DECIMAL NUMERIC PROGRAM DATA> is program data used to transfer numeric constants represented in
decimal notation. There are three types of decimal numeric representation: integer, fixed- point, and floating-point.

These three types of numerics represent decimal numeric program data, which can contain spaces, flexibly (NRF:
flexible numeric representation), so they are defined as follows.

—_— <mantissa>

<mantissa> is defined as follows.

s o

I <white space> j I

<exponent> 7—'

<digit>

<optional
digits>

<exponenet> is defined as follows.

(=)
~ L

<white

space>

<white space> and <optional digits> are defined as follows.

<digit>

L

<white space
character>

<digit>

e

[]g For <white space>, see Section 5.2.3. For <digit>, see Section5.3.1.

5-22

5.3 Program Data Format

Let’s take a look at coding syntactical charts of decimal numeric program data with respect to integer, fixed-point,
and floating- point notations respectively.
Note that the following processing is performed during transfer of any type of numeric representation.

@ Rounding of numeric element: ~ When a device receives a <DECIMAL NUMERIC PROGRAM DATA> element
having too many digits to handle, it ignores the sign of the element value and
rounds it off.

@ Data outside the range: If the <DECIMAL NUMERIC PROGRAM DATA> element value is outside the
range permitted in relation to the program header, an execution error is reported.

(1) Integer NR1 transfer

A decimal value not including a decimal point and exponent, i.e., an integer (NR1) in a real number, is trans-

ferred.
<white
<digit>
I space> f
@ 0 (s) may be added at the beginning. - 005, + 000045
@ A space (+ or —) must not be inserted between a sign and a numeric. — +5, + A5 (X)
@ Spaces may be added after a numeric. - + 5AAA
® The + sign may be omitted. - +5,5
@® Commas must not be used to indicate decimal places. - 1,234,567 (x)

5-23

Sect

ion 5 Listner Input Formats

&)

~g—— (Integer part)

5-24

Fixed-point NR2 transfer

A decimal number having digits below the decimal point, i.e., an integer and a real number (NR2) except an

exponent, is transferred.

The syntactical chart shows an integer part and a decimal point (and a decimal part).

- P—a— (Decimal part) =
Decimal point

<digit> <digit>

‘
!
!

@

<digit>

<white space

character>

/ /
// / . . /
/ ‘=-The decimal point |
/ . /
/~~The numeric in the integer Cannot be omitted. (__The numeric in the decimal
part may be omitted. part may be omitted.

An integer representation is applied to the integer part.
A space must not be inserted between a numeric and a decimal point.
Spaces may be added after the numeric in the decimal part.

A sign may be written before a decimal point.

N
N
The decimal point need not follow a numeric. -
N
N

A numeric may end with a decimal point.

+753A.123 (x)

+753.123 AAAA
.05

+.05, -.05

12.

5.3 Program Data Format

(3) Floating-point NR3 transfer

A decimal numeric having an exponent, i.e., a real number (NR3) represented in floating-point notation, is
transferred. The syntactical chart consists of a mantissa part and an exponent part. The exponent part is
represented in integer and floating-point notation to indicate precision of the numeric. The exponent part
begins with E. On the right of E is a number to the power of 10.

- (Mantissa part)

j

<digit>

<digit>

<white space

character>

)

OO

<digit>

<digit>

- (Exponent part) -

[<white space

. rE;e\ <digit>
_/ I character> <

E indicates power of 10. It indicates the beginning of the exponent part.

E may be either an uppercase or lowercase character. - 1.234E + 12, 1.234e + 12
1.234 AEA + 12

+ 1.234E + 4, 1.234E4
-1E2, -E2 (x), —E2 (X)

A space may be written before or after E/e.
If the sign is +, it may be omitted in mantissa and exponent parts.

0000
Ll

The numeric in the exponent part cannot be omitted.

5-25

Section 5 Listner Input Formats

5.3.3 <SUFFIX PROGRAM DATA>

<SUFFIX PROGRAM DATA> follows <DECIMAL NUMERIC PROGRAM DATA> (integer NR1, fixed-point

NR2, or floating-point NR3). The NR1, NR2, and NR3 may be followed by a suffix.

— NRi1

NR2

—1 NR3

A suffix is added at the end of decimal numeric program data only when the data requires a unit of measure. It is a
combination of a suffix unit and a suffix multiplier. The syntactical chart is shown below. Bold-line routes are used

<SUFFIX
PROGRAM
DATA>

NR field

frequently.
<suffix <suffix /—\
. - <digit>
muit> unit>] _j [
<white
space>
<suffix
- <digit>
unit>

@ A suffix multiplier is represented by an uppercase or lowercase character.

For example, 1E3 Hz is represented by 1 kHz assuming 1E3 = k.

® A suffix unit is represented by an uppercase or lowercase character.

@ Placing E at the beginning of <SUFFIX PROGRAM DATA> is prohibited because it may be confused with the

E used for floating-point decimal numerics.

5-26

5.3 Program Data Format

Suffix multipliers and units are listed in the table below.

(1) Suffix multipliers

Table 5-1 Suffix multipliers

Multiplier Mnemonic Name
1E18 EX EXA
1EIS5 PE PETA
1E12 T TERA

1E9 G GIGA
1E6 MA (NOTE) MEGA
1E3 K KILO
1E-3 M (NOTE) MILLI
1E-6 U MICRO
1E-9 N NANO
1E-12 P PICO
1E-15 F FEMTO
1E-18 A ATTO

Note:

According to convention, Hz to the sixth power of 10 is MHz (mega-
hertz) and OHM to the six power of 10 is MOHM (megaohm). These
are not listed in the above table, but they are listed in Table 5-2, “Suffix

units.”

(2) Relative units (dB)

@ Decibel relative to 1 UV ..oveeiivecieieeiciiiee
@ Decibel relative to 1 UW .o
@ Decibel relative to 1 mWcooeveieennne.

5-27

Section 5 Listner Input Formats

(3) Suffix units

Table 5-2 Suffix units

Recommended Quasi recommended
Item . . R . Name
mnemonic of unit mnemonic of unit
Current A Ampere
Atmospheric pressure ATM Atmosphere
Charge C Coulomb
Luminance CD Candela
Decibel DB Decibel
Power DBM Decibel milliwatt
Capacitance F Farad
Mass G Gram
Inductance H Henry
Frequency (hertz) HZ Hertz
Mercury column INHG Inches of mercury
Joule J Joule
Temperature K Degree Kelvin
CEL Degree Celsius
FAR Degree Fahrenheit
Volume L Liter
Luminance LM Lumen
Luminance LX Lux
Length (meter) M Meter
FT Feet
IN Inch
Frequency (1E3 Hz) MHZ Megahertz
Resistance MOHM Megaohm
Force N Newton
Resistance OHM Ohm
Pressure PAL Pascal
Ratio (percent) PCT Percent
Angle (radian) RAD Radian
Angle (degree) DEG Degree
MNT Minute (of arc)
Time (second) S SEC Second
Conductance SIE Siemens
Automatic speed T Tesla
Pressure TORR Torr
Voltage \% Volt
Power (watt) w Watt
Speed/hour WB Weber
Luminance LM Lumen

5-28

5.3 Program Data Format

5.3.4

<NON-DECIMAL NUMERIC PROGRAM DATA>

<NON-DECIMAL NUMERIC PROGRAM DATA> is program data used to transfer decimal, octal, and binary
numeric data as non-decimal numeric values. Non-decimal data always begins with #. It is defined as shown in the

coding syntactical chart below.

When an unspecified character string is sent, a command error occurs.

H/h

555083

{
\

<digit>

&)

LPRRLRPPOF

The character string following #H or #h is
accepted by the device as a hexadecimal
number.

The character strings in parentheses are
decimal numbers.

#Habc1230 (11,256,099D)
#hAbC123

#H2DC3 (11,715D)
#h2dc3

#H8301 (33,537D)
#h8301

The character string following #Q or #q is
accepted by the device as an octal number.

#Q37 (31D)
#q37

#Q26703 (11,715D)
#q26703

The character string following #B or #b is
accepted by the device as a binary number.
#B101010111100000100100011 (11,256,099D)
#b0010110111000011 (11,715D)

5-29

Section 5 Listner Input Formats

5.3.5 <STRING PROGRAM DATA>

<STRING PROGRAM DATA> is program data consisting of only character strings. All ASCII 7-bit codes can be
used. When a character string includes single or double quotation marks, two identical quotation marks must be
written in succession per quotation mark.

<inserted'>

<non-single

quote char>

<inserted">

(O
N

!

<non-double
quote char>

@ A character string must be enclosed with single or double quotation marks irrespective of whether the character
string contains any quotation mark. For example,

It's a nice day. - "It's a nice day."
- It 's a nice day.'

® When a character string is enclosed with single quotation marks, each single quotation mark contained in the
character string must be doubled. Other characters, including double quotation marks, must be written as they
are. For example,

"l shouted® 'Shame'." - "] shouted™ 'Shame' '." '

@ When a character string is enclosed with double quotation marks, these double quotation marks must be
doubled. Other characters, including single quotation marks, must be written as they are. For example,

"I shouted” 'Shame'." — """l shouted™ ‘Shame"."""
@ <inserted "> is an single ASCII code set in ASCII code byte 27 (decimal 39 = symbol). <inserted "> is a single

ASCII code set in ASCII code byte 22 (decimal 34 = symbol "). <non-single quote char> and <non-double
quote char> are single ASCII codes other than single and double quotation marks.

5-30

5.3 Program Data Format

5.3.6 <ARBITRARY BLOCK PROGRAM DATA>

<ARBITRARY BLOCK PROGRAM DATA> is non-decimal program data starting with #. Binary data is trans-
ferred directly in 1-byte (8-bit) blocks. Differences from the non-decimal numeric program data (<NON-DECI-
MAL NUMERIC PROGRAM DATA>) mentioned on Section 5.3.4 are as follows:

@ Data is not limited to numeric data, but character string data and numeric data can be handled.
@ The number of data bytes to be transferred can be written between # and the first data.

The non-decimal data is program data that can specify the data bytes to be transferred.

L

<non-zero digit> <digit> <8-bit data byte>

® <digit> One of ASCII code bytes 30 to 39 (decimal values 48 to 57 = characters 0 to 9).
@® <non-zero digit> One of ASCII code bytes 31 to 39 (decimal values 49 to 57 = characters 1 to 9).
@ <8-bit data byte> An 8-bit byte within the range from 00 to FF (decimal values 0 to 255).

5-31

Section 5 Listner Input Formats

(1) When the number of data bytes to be transferred is known

The upper-right route in the above syntactical chart is applied.

Specify the number of <8-bit data byte> bytes to be transferred at the <digit> position, i.e., just before writing
data. Write the number of digits of the specified number of bytes between # and <non-zero digit>. For
example, to send four data bytes (DABs), write <ARBITRARY BLOCK PROGRAM DATA> as follows:

To send four bytes, specify 4 at the <digit> position.

\2

#14<DAB><DAB><DAB><DAB>

T
The number of digits of the value 4 at the <digit> position is 4. So specify 1 at the <non-zero digit>
position.

To send four bytes, specify 4 at the <digit> position. Leading Os may be specified.
|’
#3004<DAB><DAB><DAB><DAB>
T

The number of digits of the value 4 at the <digit> position is 3. Specify 3 at the <non-zero digit>
position.

(2) When the number of data bytes to be transferred is unknown

The lower-right route in the syntactical chart on page 5-31 is applied. Write #0 before the first data and write
NLAEND after the last data, causing exitless termination.

#0<DAB><DAB><DAB><DAB> <DAB>NLAEND
If the following statements are specified for NL and ~END at the beginning of the program, then an EOI signal
(END signal) is issued along with the terminator LF when the last byte has been transferred. (See Section

5.2.2)

@® ForNL, TERM IS CHR $ (10)
@® For END, EOlI ON

5-32

5.3 Program Data Format

(3) Handling integer-precision binary data

Integer-precision binary data is used as <ARBITRARY BLOCK>-type transfer data, whether it is program
data or response data, and has the specifications summarized below. Negative values are processed as two’s
complements.

Number of transfer bytes 1, 2,4, or 8 bytes

Byte transfer order Bytes are transferred sequentially, starting at the most significant byte.
LSD -eeeeee Right-justify
Signed binary code MSB -o-evee Sign bit

When the data length is shorter than the field length, pad the remaining field with MSBs.

LSD «eeeeeee Right-justify
Unsigned binary code MSB - Not a sign bit
Pad unused high-order bits with 0s.

Ranges of signed and unsigned 1-byte (8-bit) and 2-byte (16-bit) integer data are shown below.

8-Bit Binary With Sign No Sign 16-Bit Binary With Sign No Sign
10000000 -128 128 1000000000000000 -32768 32768
10000001 -172 129 1000000000000001 -32767 32769
10000010 -126 130 1000000000000010 -32766 32770
11111101 -3 253 1111111111111101 -3 65533
11111110 -2 254 1111111111111110 -2 65534
11111111 -1 255 1111111111111 -1 65535
00000000 0 0 0000000000000000 0 0
00000001 1 1 0000000000000001 1 1
00000010 2 2 0000000000000010 2 2
00000011 3 3 0000000000000011 3 3
01111101 125 125 0111111111111101 32765 32765
01111110 126 126 0111111111111110 32766 37266
01111111 127 127 0111111111111111 32767 32767

Internal representations of signed 1-, 2-, 3-, 4-, and 8-byte integer data are shown below. When the sign bit is
0, it indicates positive data. When a sign bit is 1, it indicates negative data.

%2 (Integer par) The decimal point position is fixed at the right of the LSB bit,
S these data are also called fixed-point binary numbers. As the
! 7 0 ! £ Decimal point decimal point position is fixed, digits below the decimal point
| 1 bytes 1 2 bytes are discarded if an attempt is made to set data containing these
é_?_ (Integ;r part) digit's (below the decimal ?oint), that is, inte.:ger data is.set in
S : the integer part. For unsigned data, all bits are set in the
115 14 817 01 “-Decimal point integer part.
| 1bytes | 2bytes | 3 bytes 4 bytes

0 I : I

Q | (Integer part) I

> 1 ! | .

131 24123 16[15 817 0 1 &-Decimal point

| 1bytes | 2bytes | 3bytes | 4bytes | S5bytes 6bytes 7bytes 8bytes

é—’,’- : i i (Integér part) i i i

S ! | : : | i |

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

Decimal point

5-33

Section 5 Listner Input Formats

(4) Floating-point binary data

Floating-point binary data, whether it is program data or response data, is used as <ARBITRARY BLOCK>-
type transfer data. Our products do not support floating-point binary data; however, general specifications are

explained below.

Floating-point binary data must consists of the following three fields:

(a) Sign field (sign bit)
(b) Exponent field (exponent bit)

(c) Mantissa field (mantissa bit)

Numeric data having a decimal point is handled here. It has two types of precision: single precision and double

precision. Field structures and transfer orders are shown below. Meanings of symbols are as follows:

S: Signbit

EM: Most significant exponent bit

EL: Least significant exponent bit

FM: Most significant mantissa bit

FL: Least significant mantissa bit

Precision Number of transfer bytes Field structure and transfer order
Transfer byte DIO line
8176|5143 (2]1
1st byte S|/EM|E|E|E|E |E|E
2nd byte ELIFM|F |F|F|F|F|F
Single 3rd byte F|F|F|F|F|F|F|F
g 4 bytes
precision 4th byte F|{F|F|F|F|F|F|FL
Sign bit : 1 bit
Exponnent bit : 8 bits (+127 to —126)
Mantissa bit: 23 bits
Transfer byte DI line
81716 |5|4|3[2]1
1st byte S|EM|E|E|E|E |E|E
2nd byte E|E|E |EL|FM|F | F | F
Double 8 bytes 3rdto 7thbyte | F | F | F | F | F | F | F | F
precision 8th byte F|F|F|F|F|F|F|FL
Sign bit : 1 bit
Exponnent bit : 11 bits (+1023 to —1022)
Mantissa bit: 52 bits

5-34

5.3 Program Data Format

5.3.7 <EXPRESSION PROGRAM DATA>

The <EXPRESSION PROGRAM DATA> element sends the expression for obtaining a scalar, vector, matrix, or
string value to a device, allowing the device to calculate a value in place of the controller. Its coding syntactical

chart is as follows:

@ <expression>:

@ <expression> @

A sequence of ASCII characters represented by ASCII code bytes 20 to 7E (deci-
mal values = 32 to 126), excluding the following six charactersin []:

L« # < C >y 5 1

That is, a double quotation mark, number code (sharp), single quotation mark, left
parenthesis, right parenthesis, and semicolon are excluded.

If a+b+c is written as <expression>, then the above syntactical chart will be ex-
pressed as
(a+b+c¢)

To transfer this to a device, program data discussed on pages 5-20 to 5-34 can be
used with the exception of the <INDEFINITE LENGTH ARBITRARY BLOCK
PROGRAM DATA>. Upon receipt of (<expression>), the device obtains the
solution to this expression.

Note:
The MS9710C does not support the <expression> function. If calcula-
tion of an expression is required, the solution to the expression must be
obtained by the controller and the resultant numeric data must be trans-
ferred to the device as program data.

5-35

Section 5 Listner Input Formats

5-36.

Section 6 Talker Output Format

Device messages transferred between the controller and devices are classified

into program messages and response messages. This section explains the formats

of the program messages sent from a talker to a listener.

6.1

6.2

Differences in Syntax between Listener Input
Formats and Talker Output formats................
Response Message Functional Elements
6.2.1 <TERMINATED RESPONSE
MESSAGE>ccoovviviierercreereeenne
6.2.2 <RESPONSE MESSAGE
TERMINATOR> ...
6.2.3 <RESPONSE MESSAGE->
6.2.4 <RESPONSE MESSAGE UNIT
SEPARATOR>coveieierereeereeicnenene
6.2.5 <RESPONSE MESSAGE UNIT>
6.2.6 <RESPONSE HEADER
SEPARATOR>coovvireireeerenenenene
6.2.7 <RESPONSE DATA SEPARATOR> ..
6.2.8 <RESPONSE HEADER>
6.2.9 <RESPONSE DATA>ccccoeveneeenene

Talker Output Format

Section 6 Talker Output Format

Note:
In this section, CNF? and SPF? are used to explain talker output formats. The MS9710C does not support
these commands.

Typical response messages are: measurement result, setting, and status information. Response messages are classi-
fied into those with header and those without header.

The following figure shows that messages, ASCII character strings with header, are sent from a device to a control-
ler in response to a center frequency message unit CNF? and a span frequency response message unit SPF?.

<TERMINATED RESPONSE MESSAGE>
A

r N\
<RESPONSE MESSAGE> <RESPONSE MESSAGE TERMINATOR>
, Al N Address 3
Listener Talker
CNF 123000000 ; SPF 1900900 <NL> .
(controller) (device)
<RESPONSE MESSAGE UNIT> <RESPONSE MESSAGE UNIT SEPARATOR> <RESPONSE MESSAGE UNIT> <NL>

CNF 123000000 H SPF 1000000

AN

<RESPONSE HEADER> <RESPONSE DATA> <RESPONSE HEADER> <RESPONSE DATA>

CNF 123000000

<RESPONSE HEADER SEPARATOR>

sp

SPE

<RESPONSE HEADER SEPARATOR>

sp

<response mnemonic> <character response data>

CNF 123000000

<character response data>

0001000000

Only the operation-related parts is programmed as follows:

100 WRITE @103: “CNF? ; SPF?”!
110 READ @103:A$! «

Center and span frequency query message
When a terminator NL is detected, a response message “CNF
123000000; SPF 1000000” is read into A$.

A response message is a sequence of functional elements, the minimum units that can represent functions, as is the
case with the program message. In the above figure, functional elements are indicated by uppercase characters with
them enclosed in < >. Functional elements are further classified into coding elements which are indicated by
lowercase characters with them enclosed in < >.

Let’s take a look at talker output formats focusing on the differences from listener input formats.

6.1 Differences in Syntax between Listener Input Formats and Talker Output formats

6.1

mats and Talker Output formats

Significant differences in syntax between the listener and the talker are as fol-

@ Listener format:

@® Talker format:

lows:

Differences in Syntax between Listener In‘put For-

Program can be written flexibly so that devices can accept program messages
from the controller. If a program message involves some description errors, it can

execute its function normally. For example, you can joint as many <white space>

elements as you want to make an easy-to-read program.

Messages are output following strictly defined syntactical rules to allow the con-
troller to accept the response messages from the device. Therefore, the syntax of

response messages permits only one notation for a function.

The table below summarizes the differences in output format between the listener and the talker. In this table, “0/1
or more spaces” means <white space>.

Item

Listener input program message syntax

Talker output response
message syntax

Characteristic

(Flexible)

(Strict)

Alphabetic characters

No difference between uppercase

Uppercase characters only
and lowercase charactersr

Character before and

0 or more spaces + E/e + 0 or more spaces

Uppercase character E

after NR3 exponent part E only
+ sign of NR3 exponent part | Omissible Required
) Two or more white spaces can be written
<white space> . Not used
before/after a separator or before a terminator.
. (a) Header with program data (a) Data with header
Message unit . .
(b) Header without program data (b) Data without header

Unit separator

0 or more spaces + Semicolon

Semicolon only

Space before header 0 or more spaces + Header Header only
Header separator Header + 1 or more spaces Header + One $20"
Data separator 0 or more spaces + Comma + 0 or more spaces Comma only
. 0 or more spaces + One of NL, EOI,
Terminator and NL+EIO NL+EOI
f1:

ASCII code byte 20 (decimal value 32 = ASCII character SP, space)

oo
(]
£
fo
o

L.

hd
=
Qo

=
=3

o
-
(Y]

=
©

-

Section 6 Talker Output Format

6.2 Response Message Functional Elements

Response messages output from a talker are terminated with an NLAEND signal, allowing the controller to accept
them. Functional elements of these response messages are explained here.

Rules for syntactical chart notation are the same as those for program messages, so see section 5. Functional and

coding elements which are the same as those of program messages are not explained in this section, so see section 5
for them.

6.2.1 <TERMINATED RESPONSE MESSAGE>
<TERMINATED RESPONSE MESSAGE> is defined as follows:

<RESPONSE MESSAGE>
Refer t0 6.2.3

<TERMINATED RESPONSE MESSAGE> is a data message having all the necessary functional elements to be
sent from a talker to a device.

<RESPONSE
MESSAGE TERMINATOR>
Referto 6.2.2

To complete transfer of <KRESPONSE MESSAGE>, <RESPONSE MESSAGE TERMINATOR> is added at the
end of <RESPONSE MESSAGE>.

<Example> <TERMINATED RESPONSE MESSAGE> in which two message units are connected

<TERMINATED RESPONSE MESSAGE>
A

<RESPONSE MrESSAGE> <RESPONSE M;SAGE TERMINATOR>
i * N
List Talk
(C(;it(:c:]”eerr) < CNF 123000000 ; SPF 1900000 <NL> alker

(device)
\ / Address 3

| Functional element |

6.2 Response Message Functional Elements

6.2.2 <RESPONSE MESSAGE TERMINATOR>
<RESPONSE MESSAGE TERMINATORS is defined as follows:

<RESPONSE MESSAGE TERMINATOR> is placed after the last KRESPONSE MESSAGE UNIT> to terminate
the sequence of one or more fixed-length <KRESPONSE MESSAGE UNIT> elements.
If the following statements are specified for NL and "END at the beginning of the program, then an EOI signal

(END signal) is issued along with the terminator LF when the last data byte has been transferred. ([[:g’ See

Section 5.2.2.)
® For NL, TERM IS CHRS$ (10)
@® For END, EOI ON

<Example> Reading the currently set center frequency
10 LET ADR=101

20 TERM IS CHR$ (10) ! ... Specify LF (New Line) as a terminator code.

30 EOI ON ! ..o, Output a EOI signal for making the EOI line true when the last data byte
has been transferred.

40 WRITE @ADR: “CNT?” ! ... Center wavelength read query

50 READ @ADR:A$!..... Terminate response data read with an EOI signal.

60 PRINT A$

70 END

Talker Output Format

Section 6 Talker Output Format

6.2.3 <RESPONSE MESSAGE>
<RESPONSE MESSAGE> is defined as follows:

m
MESSAGE UNIT
SEPARATOR>
Refert0 6.2.4

<RESPONSE MESSAGE UNIT>
Referto 6.2.5

<RESPONSE MESSAGE-> is a sequence of one or more <KRESPONSE MESSAGE UNIT> elements.

The <RESPONSE MESSAGE UNIT> element is a single message sent from a device to a controller. A <RE-
SPONSE MESSAGE UNIT SEPARATOR> is used as a separator for separating multiple <RESPONSE MES-
SAGE UNIT> elements.

<Example> Adding CNF to the center frequency, adding SPF to the response data, and transfer-
ring them using a 1-character fixed format

<RESPONSE MESSAGE>

AL
r hY

CNF 123000000 . SPF 1000000

<RESPONSE MESSAGE UNIT> <RESPONSE MESSAGE UNIT SEPARATOR> <RESPONSE MESSAGE UNIT>

6.2.4 <RESPONSE MESSAGE UNIT SEPARATOR>
<RESPONSE MESSAGE UNIT SEPARATOR> is defined as follows:

A
N

<RESPONSE MESSAGE UNIT SEPARATOR> is used to separate <KRESPONSE MESSAGE UNIT> elements
with a <UNIT SEPARATOR> (semicolon (;)) when outputting a sequence of multiple <RESPONSE MESSAGE
UNIT> elements as one <RESPONSE MESSAGE>.

6-6

6.2 Response Message Functional Elements

6.2.5 <RESPONSE MESSAGE UNIT>
<RESPONSE MESSAGE UNIT> is defined as follows:

<RESPONSE
DATA SEPARATOR>
Refer to 6.2.7

<RESPONSE
HEADER>
Refer to 6.2.8

<RESPONSE
HEADER SEPARATOR>
Refer to 6.2.6

<RESPONSE DATA>
Refer to 6.2.9

<RESPONSE
DATA SEPARATOR>
Refer to 6.2.7

<RESPONSE DATA>
Refer to 6.2.9

One is a response message unit with header, which returns the result of processing the program-message-set infor-
mation accurately. The other is a response message unit without header, which returns only the measurement result.

6.2.6 <RESPONSE HEADER SEPARATOR>
<RESPONSE HEADER SEPARATORS> is defined as follows:

(&)
\&

<RESPONSE HEADER SEPARATOR> is a space written after <RESPONSE HEADER> to be separated from
<RESPONSE DATA>.

The space SP corresponds to ASCII code byte 20 (decimal 32).

In a response message with header, a space must always exist between the header and the data as a response header
separator. It indicates the end of the header and the beginning of response data at the same time.

Section 6 Talker Output Format

6.2.7 <RESPONSE DATA SEPARATOR>
<RESPONSE DATA SEPARATOR> is defined as follows:

L)
N

When multiple <KRESPONSE DATA> elements are to be output, <RESPONSE DATA SEPARATOR> must be
placed between them.

6.2.8 <RESPONSE HEADER>

The format of <KRESPONSE HEADER> is the same as that of <COMMAND PROGRAM HEADER> stated on
Section 5.2.8 with the exception of the following three points:

(1) Characters that can be used in <response mnemonic> are specified. For alphanumeric characters, only upper-
case characters must be used. Other points are the same as those of <program mnemonic>.

(2) A space cannot be written before a response header while it can be written before a program header.

(3) Only one space can be written before a response header while two or more spaces can be written before a
program header.

On the next page, the response header is explained up to <response mnemonic>.
([@ It should be noted that only uppercase characters must be used in <response mnemonic>. Other points are
the same as those of <program mnemonic> discussed on Section 5.2.8.)

6.2 Response Message Functional Elements

Item

Function

RESPONSE HEADER

A header indicates a function of <KRESPONSE DATA>. It explains the function
with a 12-character-long character-long character string or a <response mnemo-
nic> element that consists of uppercase characters, numeric characters, and/or
underline.

<simple response header>
Refer to (1)

<compound response header>
Refer to (2)

| <common response header>
Refer to (3)

(1) <simple response header> is defined as follows.

<response mnemonic>
Refer to (4)

(2) <compound response header> is defined as follows.

<response ' <response

mnemonic> O mnemonic>|

Refer to (4) ' Refer to (4)

(3) <common response header> is defined as follows.

m <response mnemonic>
_/ -

Refer to (4)

(4) <response mnemonic> is defined as follows.

<upper-case

alpha>t1

<upper-case /-\
—
alpha>t1 U
<digit>
Refer to (4) of 5.2.8
NOTE 11:

<upper-case alpha> ASCII code bytes 41 to 5A
(decimal values 65 to 90 = uppercase characters A to Z)

Section 6 Talker Output Format

6.2.9 <RESPONSE DATA>

There are 11 types of <KRESPONSE DATA> elements. Among them, the MS9710C transfers the response data shown
in the hollow squares surrounded by a shade. The response data to be returned depends on the query message.

<CHARACTE
RESPONSE DATA>

ﬂ?’ Refer to (1) of 6.2.9

<NR1 NUMERIC
RESPONSE DATA

l@ Refer to (2) of 6.2.9

<NR2 NUMERIC
RESPONSE DATA>

[l? Refer to (3) of 6.2.9

<NR3 NUMERIC
RESPONSE DATA>

[Referto (4) of 6.2.9

<HEXADECIMAL
NUMERIC RESPONSE DATA>

[@’ Refer to (5) of 6.2.9

<OCTAL NUMERIC
RESPONSE DATA>

[Referto (6) of 6.2.9

<BINARY NUMERIC
RESPONSE DATA>

[Referto (7) of 6.2.9

<STRING
RESPONSE DATA>

[@ Refer to (8) of 6.2.9

<DEFINITE LENGTH
ARBITRARY BLOCK RESPONSE DATA>

[Referto (9) 0f 6.2.9

<INDEFINITE LENGTH
ARBITRARY BLOCK RESPONSE DATA>11

[Referto (10) of 6.2.9

<ARBITRARY ASCII
RESPONSE DATA>11

[@ Refer to (11) of 6.2.9

f1:

<INDEFINITE LENGTH ARBITRARY BLOCK RESPONSE
DATA> and <ARBITRARY ASCII RESPONSE DATA> is terminated
with NL ~ END after the last byte has been transferred.

6-10

6.2 Response Message Functional Elements

Item Function
(1) CHARACTER Data consisting of the same character string as that of <response mnemonic>.
RESPONSE DATA Accordingly, the character string always begins with an uppercase character and

(2) NR1 NUMERIC
RESPONSE DATA

<Example>
123

+123
-1234

(3) NR2 NUMERIC
RESPONSE DATA

<Example>
12.3
+12.34
—-12.345

(4) NR3 NUMERIC
RESPONSE DATA

<Example>
1.23E+4
+12.34E-5
—12.345E+6

* Lowercase
characters cannot be
used for E.

e E must not be
preceded and
followed by a space.

¢ + in the exponent part
is mandatory.

* + in the mantissa part
is mandatory.

its length is less than 12 characters. Numeric parameters must not be used.

<response mnemonic>
Refer to (4) of 6.2.8

Integer data, i.e., a decimal value of an integer that has neither decimal point nor

<digit>]

Refer to (4) of 5.2.8

exponent.

Fixed-point data, i.e., a decimal value other than integers or a decimal value hav-
ing an exponent.

<digit> /\ <digit>
Refer to (4) U Refer to (4)
of 5.2.8 of 5.2.8

Fixed-point data, i.e., a decimal value having an exponent.

<digit>
Refer to (4)
of 5.2.8

<digit>
Refer to (4)
of 5.2.8

)

<digit>
Refer to (4)
of 5.2.8

6-11

Section 6 Talker Output Format

Item Function

(5) HEXADECIMAL Data represented in hexadecimal notation.

NUMERIC RESPONSE
DATA

<Example>
#HABC123
#H2DC3

()
#H8301 #
N

)

(6) OCTAL NUMERIC Data represented in octal notation.

RESPONSE DATA

<Example>
#Q37
#Q26703
#Q30562

(i —(a)
T\

(7) BINARY NUMERIC Data represented in binary notation.

RESPONSE DATA

<Example>
#B011101
#B1011
#B1011

(#)
0

)

f} RRPPPPPPAPPRVPG

6-12

6.2 Response Message Functional Elements

Item

Function

(8) STRING RESPONSE
DATA

<Example>
"This is a text"
"Say, IlllHe”ollll‘“

(9) DEFINITE LENGTH
ARBITRARY BLOCK
RESPONSE DATA

<Example>
Transferring 11256099D
in a 4-byte blocks

2
#1400ABC123

(10) INDEFINITE LENGTH
ARBITRARY BLOCK
RESPONSE DATA

<Example>
Indefinite-length
-250, =50, 120, ...
are transferred

l
#OFFOBFFCEO078

(11) ARBITRARY ASCII
RESPONSE DATA

<Example 1>
<ASCII Byte><ASCII
Byte>NLAEND
<Example 2>
NLAEND

Any ASCII 7-bit code can be used.

The character string must be enclosed with double quotation marks (").

When a character string contains double quotation marks, two identical quotation
marks must be written in succession per quotation mark.

Since a CR, LF, of space can be used, this element is suitable for outputting a text

to the printer or CRT.
‘ <inserted">

<non-double

quote char>

Fixed-point 8-bit binary block data.

It is suitable for transferring large-volume data, 8-bit extended ASCII code, and
non-display data. Refer to the Section 5.3.6 "<ARBITRARY BLOCK PRO-
GRAM DATA>" for more details on individual elements.

<non-zero
- <digit> <8-bit
digit>
Refer to data byte>
Refer to
5.3.6

Refer to 5.3.6
5.3.6

Indefinite-length 8-bit binary block data.
#0 must be written before the first data.
The last data must be followed by NLAEND for termination.

<8-bit
data byte>
Refer to 5.3.6

ASCII data bytes except NL character transferred in succession.
The last data must be followed by NLAEND for termination.

<ASCII data byte> “ @

6-13

Section 6 Talker Output Format

Section 7 Common Commands

This section explains common commands and common query commands speci-
fied by IEEE 488.2. These common commands are not bus commands which are
used as interface messages. Like device messages, the common commands are
data messages used when the bus data mode (or the ATN line) is false. They can
be applied to all measuring instruments, including those of other companies, that
comply with IEEE 488.2. IEEE 488.2 common commands always begin with *.

7.1 Classification of MS9710C-Supported Common

Commands by Group Function....................... 7-2
7.2 Classification of Supported Commands and
Referencesccccoveeveeciiecnecrnenenrese e 7-2

Common Commands

Section 7 Common Commands

7.1 Classification of MS9710C-Supported Common
Commands by Group Function

The table below shows classification of MS9710C-supported IEEE 488.2 com-
mon commands by group function. Common commands to be supported are ex-

plained in an alphabetical order on the following pages.

7.2 Classification of Supported Commands and Ref-

erences
MS9710C-supported commands discussed previously are classified by function
group as shown below. Details on these commands are given in alphabetical
order on the next and subsequent pages.
Group Function by group Mnemonic
Svstem dat Information about device connected to the system (e.g., manufacturer *[DN?
stem data
4 name, type name, and serial number) is returned. *OQPT?
Control inside the device: +RST
Internal operation (a) Resetting of device at level 3 #TST?
(b) Self-test and error detection inside the device)
A device is synchronized with the controller by: .OPC
E 3
a) Service request wait
Synchronization @) . 4 . *QPC?
(b) Device output queue wait
. . *WAI
(c) Forced sequential execution
. . *CLS
A status byte consists of a status summary message. Summary bits of +ESE
the status summary message are set by a standard event register, ESE?
output queue, and extended event register (or an extended queue).)
Status and event . . i *ESR?
Three commands and four queries are provided to set, clear, validate, +SRE
and invalidate the data in these registers and queues and to know the +SRE?
register settings using queries. +STB?

7-2

*CLS

Command

*CLS Clear Status Command

(Clears status byte registers)

H Format

*CLS

B Application example
WRITE @108 : “«CLS”
WRITE @108:“CNT 1305.8; SPN 1000 ; *CLS”

H Explanation
The *CLS command clears all status structures (i.e., event registers and queues)
except an output queue and its MAV summary messages, thus clearing the corre-
sponding summary messages.

The output queue and its MAV summary messages are also cleared in the follow-
ing case:

30 WRITE @108: “CNT 1305.8 ; SPN 1000”
40 WRITE @108:“«CLS ; CNT?”

Issuing a *CLS command after <PROGRAM MESSAGE TERMINATOR> or
before <QUERY MESSAGE UNIT> will clear all status bytes. With this

()
method, all unread messages in the output queue will also be cleared. Values set 'g
in enable registers are not changed by the *CLS command. ©
Service request--—-———-—----—- | E
|
occurrence I]
Extended event
| X, v (Not used) o
! register or queue g
! Standard event
} /\ I | 2
! register =
! o
MSS 6 RQS [+-1-—----}F-- ! (&)
ESB . A §
MAV o|o|olo|o
LI |...... Output Queue
VI VI BV B R
3
2 \ /
Extended event
1 . (Queue is not used)
\ / register or queue
Extended event
0 . (Queue is not used)
\/ register or queue
Status summa Extended event
v . (Not used)
message register or queue
Extended event
Not
Status Byte Register register or queue (Not used)

7-3

*ESE

Command

*ESE Standard Event Status Enable Command

(Sets or clears the standard event status enable register)

B Format

+*ESE<HEADERSEPARATOR> <DECIMAL NUMERIC PROGRAM DATA>

<DECIMAL NUMERIC PROGRAM DATA>: A value rounded to an integer, 0
to 255 (base is 2 and binary weights are assigned).

B Application example
WRITE “108: “*ESE 20"
Sets enable register bits 2 and 4.

B Explanation
The total of values (2°=1,2!'=2,22=4,23=8,2* =16, 25 = 32, 26 = 64, and/or 27
= 128) corresponding to the standard event status enable register bits 1, 2, 3, 4, 5,
6, and/or 7 that are to be enabled becomes program data.
The value of the bit to be disabled is 0.

—— e o e — -

| To be set in Status Byte Register bit_i I

5. an ESB bit (Event Summary By | Ly et
disabled=0, enabled=128 (27) [7] (&)=—]7] Power-on
disabled=0, enabled=64 (2¢) 6] ® 6| User request
disabled=0, enabled=32 (2%) | 5 | @‘ | 5 | Command error
disabled=0, enabled=16 (24) | 4 | @ | 4 [Execution error
disabled=0, enabled=8 (2 |3 —@ | 3 [Device-dependent error
disabled=0, enabled=4 (23 12 @ | 2 | Query error
disabled=0, enabled=2 @1 [1] @ | 1| Bus control request
disabled=0, enabled=1 (29 [O] @ | 0 | Operation complete
Standard Event Status Standard Event Status
Enable Register Register

*ESE

Query

*ESE? Standard Event Status Enable Quer

(Returns the current value of the standard event status enable register)

B Format

*ESE?

B Application example
Issuing *ESE? after executing *ESE 20 will return 20.

B Explanation

The value (NR1) of the standard event status enable register is returned.

H Response message
NR1 =0 to 255

Common Commands

7-5

*ESR?

Query

*ESR? Standard Event Status Register Query

(Returns the current value of the standard event status register)

H Format

*ESR?

H Application example
30 WRITE @108 : “«ESR?”
40 READ @108 : STEVET! A command error occurs if the variable value is 32.
50 PRINT STEVET

B Response message NR1
NR1=0to 255

H Explanation
The current value NR1 of the standard event status register is returned. The total
of values (2°=1,2!=2,22=4,23=8,2*=16, 25 = 32, 2° = 64, and/or 27 = 128)
corresponding to the standard event status enable register bits 1, 2, 3, 4, 5, 6, and/
or 7 that are enabled becomes NR1. When the response has been read (e.g., line
40), this register is cleared.

o —— — ————— e ———,

5. an ESB (Event Summary BiY) ___| = /Ll
disabled=0, enabled=128 (27) [7] (&)~—] 7] Power-oN
disabled=0, enabled=64 (2°) |6 | @ | 6 | User request
disabled=0, enabled=32 (2°) |5 | @ | 5 | Command error
disabled=0, enabled=16 (2¢) |4 | —@ | 4 | Execution error
disabled=0, enabled=8 (2% 3] @ | 3 | Device-dependent error
disabled=0, enabled=4 (23 12] @ | 2 | Query error
disabled=0, enabled=2 () (1] @ | 1| Bus control request
disabled=0, enabled=1 (29 M @ | 0] Operation complete
Standard Event Status Standard Event Status
Enable Register Register

*IDN?

Query

*IDN? Identification Query

(Returns the manufacturer name, type name, serial number, and firmware level of the product)

Format

*IDN?

Application example
30 WRITE @108 : “«IDN?”
40 READ @108 : IDEN$! Stores the manufacturer name, type name, -
serial number, and irmware level.

Explanation

A manufacturer name, type name, serial number, and firmware level are returned.

Software version
0

MS9710C
ANRITSU

‘When the manufacturer of the product whose type name, serial number, and soft-
ware/hardware version number are Anritsu, 0, and 1 respectively, sending a com-
mon query *IDN? to a device will return a response message consisting of the
above four fields.

Field 1:........ Product manufacturer (e.g., ANRITSU)

Field 2:........ Type name

Field 3:........ Serial number (e.g., 0)

Field 4 Firmware version No. (control software version and optical soft-

ware version)

If you don’t want to return a serial number and firmware version in fields 3 and 4,
you can return ASCII character “0.”

Response message

A response message which consists of the above four fields separated by commas
is sent as <ARBITRARY ASCII RESPONSE DATA>.

Overall length of the response message comprising fields 1 to 4 < 72 characters

*OPC

Command

*OPC Operation Complete Command

(Sets bit O of the standard event status register when device operations have been
completed)

B Format

+*OPC

B Application example
WRITE @108 : “xOPC”

B Explanation
When all the pending device operations have been completed, standard event sta-
tus register bit O (i.e., operation complete bit) is set. However, since the
MS9710C does not have an overlap command, the *OPC command counts for

nothing.
7
| .
Logical OR
MSS 6 RQS L |
ESB [7] 8)=—] 7| Power-ON
/| S /|
MAV | 6 | /\@ | 6 | User request
| 5 | & | 5| Command error
3 _4_ (s &\ _4_1_ Execution error
i @ i Device-dependent error
2 (3) 2 | Query error
2 | < | r\u | < |
1 (&) | 1| Bus control request
1 enabled=2° _0_ @ i Operation complete
Standard Event Status Standard Event Status
0 Enable Register Register
Status Byte Register
1 O O O Output Queue

7-8

*OPC

Query

*OPC? Operation Complete Query

(When device operations have been completed, sets 1 in the output queue to gen-
erate an MAV summary message)

B Format

*OPC?

B Application example
WRITE @108 : “*OPC?

B Explanation
‘When all the pending device operations have been completed, 1 is set in the out-
put queue, waiting for an MAV summary message to occur.

H Response message
1 is returned as <NR1 NUMERIC RESPONSE DATA>.

7-9

+«OPT

Query

*OPT? Option Identification Query

(Reports an installed option list)

B Format

*OPT?

B Application example
30 WRITE @103 “xOPT?”
40 READ @103:0PTI$! Stores information about installed options.

B Explanation

States of installed options are returned using 1 or 0.

Option type Option state
OPTO1 | Not used “17
OPTO02 | White light source option 0, Not installed; 1, Installed
Reference light source plus)
OPTO03 0, Not installed; 1, Installed
SLD option
OPT04 SLD 0, Not installed; 1, Installed
OPTO05 Reference light option 0, Not installed; 1, Installed
OPT06 | Not used “0”

OPTO07 | Not used “1”

OPT08 | Not used “

OPT09 | Not used “

OPT10 | Not used “

OPT12 | Not used “

OPT13 | Not used “

OPT14 | Notused “

OPT15 | Not used “

1
0
0
0
OPT11 | Not used “0”
0
0
0
1
1

OPT16 | Not used “

B Response message
A response message which consists of the above three fields separated by com-
mas is sent as <ARBITRARY ASCII RESPONSE DATA>.
<OPTO1 option state><OPT02 option state><OPTO03 option state>
<OPT04 option state><OPTO5 option state><OPTO06 option state>
<OPTO7 option state><OPT08 option state><OPT09 option state>
<OPT10 option state><OPT11 option state><OPT12 option state>
<OPT13 option state><OPT14 option state><OPT15 option state>
<OPT16 option state>

7-10

*RST

Command

*RST Reset Command

(Resets a device at level 3)

B Format

*RST

B Application example
WRITE @108 : “*RST” Initializes only the device at address 3.

B Explanation

The *RST (Reset) command resets a device at level 3 (@ P. 4-3).
At level 3, the following items are initialized:

(¢))

@
3)

(C))

(&)

Device-dependent functions and states are restored to known states irre-
spective of the device history.

The *DDT-command-defined macro is restored to the device-defined state.

A mode in which macro operation is disabled and macros are not accepted,
is set. Macro definitions are restored to the designer-specified states.

The specified device is set in the OCIS (Operation Complete Command Idle
State). The operation complete bit cannot be set in the standard event status

register. (l]g Section 8.12)

The specified device is set in the OQIS (Operating Complete Query Idle
State). The operation complete bit cannot be set in the output queue. The
MAV bit is cleared.

The *RST command does not affect the following:

6]
@
©)
)
&)
()
(7
®

IEEE 488.1 interface state

Device address

Output queue

Service request enable register

Standard event status enable register
Power-on-status-clear flag setting
Calibration data affecting device standard

RS-232C interface condition

7-11

*SRE

Command

*SRE Service Request Enable Comman

(Sets a service request enable register bit)

B Format

*SRE<HEADER SEPARATOR><DECIMAL NUMERIC PROGRAM
DATA>

<DECIMAL NUMERIC PROGRAM DATA>:
A value rounded to an integer, O to 255 (base is 2 and binary weights are as-
signed).

B Application example
WRITE @108 : “«SRE 16" Sets enable register bit 4.

B Explanation
The total of values (2°=1,2'=2,22=4,23=8,2% =16, 2° = 32, and/or 27 = 128)
corresponding to the service request enable register bits 1, 2, 3, 4, 5, 6, and/or 7
that are to be enabled becomes NR1. The value of the bit to be disabled is O.

N Service Request

! Generation !

: | Logical OR I——: ? :

I | | I

A i A i
disabled=0, enabled=128 (27) [7] ® : 7] Notused | [2]
Not used [-»[MsS 6 RQS]+------- g
disabled=0, enabled=32 (2°) |5 | @ | 5| ESB=—2
disabled=0, enabled=16 (2%) |4] &)~ 4| MAV —3
disabled=0, enabled=8 @) |8] @ | 3 | ESB (ERROR) 5
disabled=0, enabled=4 @) 2] @ 2 | ESB (END)<—§
disabled=0, enabled=2 29 [1] @ | 1| Not used §
disabled=0, enabled=1 (29 |0 @ | 0| Not used %;

Service Request Enable Register Status Byte Register

7-12

+*SRE

Query

*SRE? Service Request Enable Query

(Returns the current value of the service request enable register)

B Format

*SRE?

B Application example
Issuing an *SRE? command after executing an *SRE16 returns 16.

H Explanation

The value NR1 of the service request enable register is returned.

B Response message NR1
) Since NR1 = bit 6 (RQS bit) cannot be set, NR1=0to 63 or 128 to 191.

7-13

+*STB

Query

*STB? Read Status Byte Command

(Returns the current value of the status byte including the MSS bit)

B Format

«STB?

B Application example

B Explanation

30 WRITE @108: “«xSTB?"
40 READ @108:STBV
50 PRINT STBV

The *STB? command returns the total of the status register value assigned binary
weights and MSS summary message value as <NR1 NUMERIC RESPONSE
DATA>.

B Response message

disabled=0, enabled=128

@)

A response message (KNR1 NUMERIC RESPONSE DATA>) is an integer rang-
ing from 0 to 255. It is the total of status byte register bit values. Status byte
register bits 0 to 5 and 7 is assigned weights 1, 2, 4, 8, 16, 32, and 128 respec-
tively, and the MSS (Master Summary Status) bit is assigned weight 64. The
MSS indicates that there is at least one reason for requesting a service.
MS9710C’s status byte register conditions are summarized in the table below.

. Service Request
Generation

| Logical OR -
A

i ; i
A i 4 ;
7] &)~ !

(&) 7 | Not used g—
Not used [-~[Mss 6 RS} ------ £
disabled=0, enabled=32 (2°) |5 | (s &) | 5| ESB+—2
disabled=0, enabled=16 (2¢) | 4] @‘ | 4 | MAV =—— g
disabled=0, enabled=8 (2%) |3] (8)= 3| ESB(ERROR) |8
disabled=0, enabled=4 (23 2] @ | 2 | ESB (END) =— g
disabled=0, enabled=2 () 1] @ [1| Not used §
disabled=0, enabled=1 (29) [0] ——@ | 0 | Not used _‘8_
Service Request Enable Register Status Byte Register
Bit Bit weights | Bit name Status byte register conditions
7 128 0 = Not used.
6 64 MSS 0 = No service is not requested. 1 = A service is requested.
5 32 ESB 0 = No event service has occurred. 1 = An event status has occurred.
4 16 MAV 0 = Data does not exist in the output queue. 1 = Data exists in the output queue.
3 8 ESB (ERROR) | 0 = No event status has occurred. 1 = An event status has occurred.
2 4 ESB (END) | 0=No event status has occurred. 1 = An event status has occurred.
1 2 0 = Not used.
0 1 0 = Not used.

N
—h
E~Y

*TST

Query

*TST? Self - Test Query

(Conducts an internal self-test and indicates whether any error has occurred)

B Format

*TST?

B Application example
30 WRITE @108 : “«TST?”
40 READ @108: TEST
50 PRINT TEST

B Explanation
The *TST? command conducts a self-test inside the device. The test result is set
in the output queue. The data in the output queue indicates that the test has been
completed without causing any error. The self-test does not require operator in-
tervention.
The MS9710C conducts a self-test on the optical unit.

B Response message
A response message is sent as <NR1 NUMBER RESPONSE DATA>.
Data range = -32767 to 32767

NR1 =-: The test has been completed without causing any error.
NR1=1: The test has not been conducted or any error occurred during the test.

7-15

*WAI

Command

*WAI Wait - to - Continue Command

(Causes the next command to wait until the current command has been executed by the device)

B Format

*WAI

B Application example

H Explanation

7-16.

WRITE @108 : “*WAI”

The *WAI command executes overlap commands as sequential commands.

If the device can start executing the next command while processing a command
or query from the controller, the command or query is called an overlap com-
mand.

If a *WAI command is executed after an overlap command, the next command
must wait for the *WAIT common command to end. This also applies to sequen-
tial commands.

However, since the MS9710C does not support overlap commands. The *WAI
command counts for nothing.

Section 8 Status Structure

This section explains the device status data specified by IEEE 488.2, the status
data structure, and the technique of synchronization between a device and a con-
troller. '

IEEE 488.2 additionally provides common commands and common queries to
get more detailed information compared with IEEE 488.1. For details on these
commands and queries, see Section 7.

8.1 |EEE 488.2 Standard Status Model................ 8-3
8.2 Status Byte (STB) Registercccccocevrveenuenne 8-5
8.2.1 ESB and MAV summary message 8-5

8.2.2 Device dependent summary message 8-6
8.2.3 Reading and Clearing

the STB registerccceovvvvvreceecennen. 8-7
8.3 Enablingthe SRQccoceieninienererereee 8-10
8.4 Standard Event Status Register 8-12
8.4.1 Definition of standard event status
register bitscoocvevveeceniin e 8-12
8.4.2 Details on query errorscccceeueenee. 8-13
8.4.3 Reading, writing, and clearing
the standard event status register 8-14
8.4.4 Reading, writing, and clearing the standard
event status enable register 8-14
8.5 Extended Event Status Register.......c.cccecene. 8-15
8.5.1 Definition of END event status
register bitsccoccevniecice 8-16
8.5.2 Definition of ERROR event status
register bitsccevvevvevrieeniniineeens 8-17
8.5.3 Reading, writing, and clearing the extended
event status registerc.cccvveveenn. 8-18
8.5.4 Reading, writing, and clearing the extended
event status enable register 8-18
8.6 Queue Modelcoeverencrricrirereree e 8-19

Status Structure

Section 8 Status Structure

8-2

The status byte (STB) sent to the controller is specified by IEEE 488.1. The bits
of the status byte represent a status summary message, providing a summary of
the current contents of the data stored in a register or queue.

The following sections explain the status summary message bits, the status data
structure for generating these status summary message bits, and the technique of
synchronizing a device with the controller using the status messages.

These functions are used to control devices from an external controller via the
GPIB interface. These functions, except a few, can also be used to control de-
vices from an external controller via the RS 232C interface.

8.1 |IEEE 488.2 Standard Status Model

8.1 |IEEE 488.2 Standard Status Model

Shown below is the standard model of the status data structure specified by IEEE 488.2

Standard Event Status j) '

Enable Register |

et with *ESE <NRf>
Read with *ESE?

oA o lXS] >

Service Requg
Enable Register

Set with *SRE <NRf>

Read with *SRE?.

Fig. 8-1 Standard status model

(&)=—] 7] Power-ON (PON)
@ | 6 | User request (URQ)
—@ | 5 | Command error (CME)
@ | 4 | Execution error (EXE)
*@ | 3 | Device-dependent error (DDE)
@ | 2| Query error (QYE)
@ | 1| Bus control request (RQC) -
(&) | 0 | Operation complete (OPC) Data
Standard Event Status Register Data
Logical OR | Data
Data
Data
L Data
| Service Request | Output Queue
Generation !
. 4 !
] : Logical OR]——1[| | > @
| | &l
PN | :
1 (7]
@——H7] | 5
I-»IMSS 6 RQS}---- 3
(&)— 5] ESB ——— E
(&)~ 4| MAV ~—— 2
) B 4
& 3 L
&/ | > |)
;f&\ 2 @
&/
() EB
&/ ||
—(&) 0]
Status Byte
Register

8-3

Status Structure

Section 8 Status Structure

Register model

Queue model

Standard Event Status Register

Status Byte Register

Output Queue

The status model uses an IEEE 488.1 status byte. This status byte consists of
seven summary message bits provided by the status data structure. To generate
these summary message bits, the status data structure is comprised of two mod-
els: a register model and a queue model.

A pair of registers used to record an event that a device has encountered and a
condition. It consists of an event status register and an event status enable regis-
ter. When the results of ANDing the values of bits of these registers is not 0, the
corresponding status register bits are set to 1s. In other cases, the corresponding
status register bits are set to Os. If the result of ORing the values of status register
bits is 1, the summary message bit is set to 1. If the result of ORing these bits is 0,
the summary message bit is set to 0.

A data structure in which status values or information are removed in the same
order they were entered. Only when the queue structure contains data, the corre-
sponding bit is set to 1. If it is empty, the corresponding bit is set to 0.

Based on the concept of the above register model and queue model, the IEEE
488.2 standard status model is constructed from two types of register models and
a queue model.

(a) Standard event status register and standard event status enable register
(b) Status byte register and service request enable register
(¢) Output queue

This register has the register model structure mentioned above. It has eight bits
corresponding to eight standard events encountered by the device: (1) power on,
(2) user request, (3) command error, (4) execution error, (5) device dependent
error, (6) query error, (7) bus control request, (8) operation complete. The result
of logical OR is output to the status byte register bit 5 (DIO 4) as an event status
bit (ESB) summary message.

The status byte register consists of an RQS bit and seven summary message bits
for setting status summary messages from the status data structure. It is used in
combination with a service request enable register. When the result of ORing the
values of these two registers is 0, the SRQ is set ON. In this case, the status byte
register bit "DIO 7" is reserved by the system as an RSQ bit, so this bit indicates
to an external controller that a service request exists. The function of the SRQ
conforms to IEEE 488.1.

This queue has the queue model structure mentioned above. Its contents are sum-
marized and transferred to the status byte register bit 4 (DIO 5) as a message
available (MAV) summary message.

8.2 Status Byte (STB) Register

8.2 Status Byte (STB) Register

The STB register consists of device STB and RQS (or MSS) messages. IEEE
488.1 defines the method of reporting STB and RQS messages, but it does not
define the setting and clearing protocols and STB meaning. IEEE 488.2 defines
device status summary messages and the master summary status (MSS) trans-
ferred to bit 6 along with an STB in response to the *STB? common query.

8.2.1 ESB and MAV summary message

Let’s take a look at an ESB summary message and an MAV summary message.

(1) ESB summary message

The ESB (event summary bit) summary message is defined by IEEE 488.2.
It appears in STB register bit 5. This bit indicates whether one or more
IEEE 488.2 defined events have occurred, with the service request enable
register set to allow events to occur, after the standard event status register
was read or cleared last. The ESB summary message bit becomes true when
at least one event registered in the standard event status register becomes
true with event occurrence enabled. Conversely, the ESB summary bit be-
comes false when none of the registered events has occurred even if event
occurrence is enabled.

(2) MAV summary message

The MAYV (message available) summary message is defined by IEEE 488.2.
It appears in STB register bit 4. This bit indicates whether the output queue
is empty. When a device is ready for accepting response messages from the
controller, the MAV summary message bit becomes 1 (true). When the
output queue is empty, this bit becomes 0 (false). This message is used to
synchronize information exchange with the controller. For example, the
controller can send a query message to the device and wait for the MAV to
become true. The controller can perform another processing while waiting
for a response from the device. If the controller has started reading the
output queue without checking the MAV, all system bus operations are sus-
pended until a response is received from the device.

Status Structure

Section 8 Status Structure

8.2.2 Device dependent summary message

Service request

IEEE 488.2 does not define whether status register bit 7 (DIO 8) and bits 3 (DIO
4) to 0 (DIO 1) are used as status register summary bits or the bits indicating
existence of data in the queue. Accordingly, these bits can be used as device
dependent summary message bits.

Device dependent summary messages have a register model or queue model sta-
tus data structure. This status register is a pair of registers used to report events
and states in parallel or a queue used to report states and information sequentially.
The summary bit provides a summary of the current status of the corresponding
status data structure. For the register model, the summary message bit becomes
true when one or more events have become true with occurrence of events en-
abled. For the queue model, the summary message bit becomes true when the
queue is not empty.

The MS9710C does not use bits 7, 1, and 0 and uses bits 2 and 3 as status register
summary bits. So the register model has four types of status data structures (two
extended status data structures), and the queue model has an output queue (no
extended status data structure).

|
occurrence i
| Extended event
| . (Not used)
! register or queue
. /\ ! Standard event
! register
1
MSS 6 RQS [«-f-—-———-F-- !
ESB , \
MAV olo|lo|olo
LI (2RI (.- Output Queue
VI NV O RO R
3
: \ /
Extended event
1 . (Queue is not used)
\ / register or queue
Extended event
0) (Queue is not used)
_/ register or queue
Status summa Extended event
v) (Not used)
message register or queue
Extended event
N d
Status Byte Register register or queue (Notused)

8.2 Status Byte (STB) Register

8.2.3 Reading and Clearing the STB register

STB register contents can be read using serial polling or an *STB? common in-
quiry. IEEE 488.1 defined STB messages can be read by either method, but the
value transferred to bit 6 (position) varies depending on the method.

STB register contents can be cleared using a *CLS command.

(1) Reading the STB register using serial polling (only when a GPIB
interface bus is used)

When IEEE 488.1 defined serial polling is carried out, the device must re-
turn a 7-bit status byte and IEEE 488.1 defined RQS message bit. Accord-
ing to IEEE 488.1, the RQS message indicates whether the device has is-
sued SRQs in the true state. The status byte value is not affected by serial
polling. Immediately after being polled, the device must set the rsv message
in the false state. If the device is polled again before a cause of issuing a
new service request occurs, the RQS message has already been set in the
false state.

(2) Reading the STB register using an *STB? common query

The *STB? common query causes the device to output STB register con-
tents and one <NR1 NUMERIC RESPONSE DATA> from the MSS (mas-
ter summary status) summary message. The response is the total of the
status register value assigned binary weights and MSS summary message
value. STB register bits 0 to 5 and 7 are assigned weighs 1, 2, 4, 8, 16, 32,
and 128 respectively, and the MSS is assigned weights 64. The response to
the *STB? is the same as that to serial polling with the exception that an
MSS summary message appears in bit 6 instead of an RQS message.

8-7

Section 8 Status Structure

(3) Definition of MSS (Master Summary Status)

The MSS indicates that the device has at least one cause of issuing a service
request. In the device’s response to the *STB? query, the MSS message

- appears in bit 6. However, it does not appear in the response to serial poll-

ing. It must not be regarded as part of the IEEE 488.1 defined status byte.
The MSS is the result of ORing the values of STB register and SRQ enable
(SRE) register bits totally. Specifically, the MSS is defined as follows:

(STB Register bit0 AND SRE Register bit 0)
OR

(STB Register bit1 AND SRE Register bit 1)
OR

(STB Register bit5 AND SRE Register bit 5)
OR
(STB Register bit7 AND SRE Register bit 7)

In the definition of the MSS, the values of bits 6 of the STB register and
SQR enable register are ignored. Accordingly, when calculating the MSS
value, the status byte may be handled assuming that it is represented by 8
bits and bit 6 is always 0.

8.2 Status Byte (STB) Register

Service request

(4) Clearing the STB register using a *CLS common command

The *CLS common command clears all status structures, except the output
queue and MAV summary message (i.e., event registers and queues), and
the corresponding summary messages.

The output queue and the MAV summary message are also cleared in the
following case:

30 WRITE @ADR: “CNT 1305.8; SPN 1000”
40 WRITE @ADR: “«CLS; CNT?”

That is, issuing a *CLS command after the <PROGRAM MESSAGE TER-
MINATOR> element or before the <Query MESSAGE UNIT> element
clears all status bytes. With this method, all unread messages in the output
queue are cleared and the MAV message becomes false. When replying to
the *STB?, the MSS message becomes false, too. Values of enable registers
are not affected by *CLS.

|
occurrence
urr | Extended event
| . (Not used)
! register or queue
7 ! Standard event
} register
|
MSS 6 RQS [«-f---——--}\—- !
ESB i , A .
MAV o|o|g|g|o
L2 |..... Output Queue
[BOIN E VR Y
3
: \ /
Extended event
1 , (Queue is not used)
\ / register or queue
Extended event
0 . (Queue is not used)
\/ register or queue

Status By e Register

Status summary
message

Extended event

. (Not used)
register or queue
Extended event
. (Not used)
register or queue

8-9

Section 8 Status Structure

8.3 Enabling the SRQ

Enabling the SRQ allows a summary message in the STB register to be selected in
response to a service request. The service request enable (SRE) register shown
below can be used to select a summary message.

Bits of the service request enable register correspond to the bits of the status byte
register. When 1 is set in a status byte bit corresponding to a significant bit of the
service request enable register, the devices sets the RQS bit to 1 and issues a
service request to the controller. For example, when bit 4 of the service request
enable register is set (enabled) in advance, a service request can be issued to the
controller each time the MAYV bit is set to 1 (if the output queue has data).

) Service Request

! Generation Il

! | Logical OR |——1| H !

| | 1

N i A i
disabled=0, enabled=128 (27) [7] @) : 7] Notused | [2]
Not used X '-»[mss 6 RaS|+------- |E
disabled=0, enabled=32 (2°) |5 | —@ [5| ESB +=—2
disabled=0, enabled=16 (2¢) |4 | @ 4 MAV<————§
disabled=0, enabled=8 (29 | 3] @ | 3| ESB (ERHOR)<—§
disabled=0, enabled=4 (23 [2] @ |2 | ESB (END)<—§
disabled=0, enabled=2 29 | 1] @ | 1| ESB (Not used) <—§
disabled=0, enabled=1 (29 | 0] @ | 0 | Not used t‘i

Service Request Enable (SRE) Register Status Byte (STB) Register

8-10

8.3 Enabling the SRQ

(1) Reading the SRE register

SRE register contents can be read using an *SRE? common inquiry. The
response message to this query is <NR1 NUMERIC RESPONSE DATA>,
an integer ranging from 0 to 255. It is a total of values of the service request
enable register. Service request enable register bits 0 to 5 and 7 are assigned
weights 1, 2, 4, 8, 16, 32, and 128, respectively. Unused bit 6 must always
be 0.

(2) Updating the SRE register

The SRE register is written using an *SRE common command. The #*SRE
common instruction is followed by a <DECIMAL NUMERIC PROGRAM
DATA> element. <DECIMAL NUMERIC PROGRAM DATA> is
rounded to an integer. It is represented in binary notation using a base 2,
indicating the total of values of SRE register bits (weight value). When the
value of this bit is 1, it indicates the enabled state. When the value of this bit
is 0, it indicates the disabled state. The value of bit 6 must always be ig-
nored.

(3) Clearing the SRE register

The SRE register can be cleared by executing an *SRE common command
or turning on the power.

When an *SRE common command is used, the SRE register can be cleared
by bringing the <DECIMAL NUMERIC PROGRAM DATA> element
value to 0. Clearing the SRE register disables the status information to gen-
erate an rsv local message, suppressing issue of a service request.

When the power is turned on, the SRE register is cleared if the power-on

status clear flag is true and the *PSC command for disabling clearing of this
register is not supported.

8-11

Section 8 Status Structure

8.4 Standard Event Status Register

8.4.1

disabled=0, enabled=128 (27)
disabled=0, enabled=64 (25)
disabled=0, enabled=32 (25)
disabled=0, enabled=16 (2¢)
disabled=0, enabled=8 (2%
disabled=0, enabled=4 (2?)
disabled=0, enabled=2 2"
disabled=0, enabled=1 (29 0]
Standard Event Status Enable Register

Definition of standard event status register bits

Any device conforming to IEEE 488.2 must have the standard event register.

Operation of the standard event register model is shown below. As it has already

been explained, here we will explain the meaning of standard event status register
bits given in IEEE 488.2.

® Power-ON (PON)

@ User request (URQ)

@ Command error (CME)

Execution error (EXE)

Device-dependent error (DDE)

7
]

Query error (QYE)

SN EEIEIN

et with *ESE <NRf

Read with *ESE?

Bus control request (RQC)
| 0 | Operation complete (OPC)
Standard Event Status Register

R0
@

(%
olx|vle|slafo]]

! Y Vv
[Logical OR |

|

ESB summary message bit
(to Status Byte Register bit 5)

Bit Event name Description
7 Power-ON (PON) The power has been turned on.
Local control is requested.
6 User request (URQ) This bit is set irrespective of the remote/local state of the device.
Since this bit is not supported by MS9710C, it is always 0.
A program message including a syntax error or a misspelled command
5 Command error (CME) has been received or a GET command has been received in a program
message.
4 Execution error (EXE) A program messag? which is syntactically correct but cannot be exe-
cuted has been received.
3 Device-dependent error (DDE) An error other than CME, EXE, and QYE has occurred.
An attempt was made to read data from the output queue while it has
2 Query error (QYE) no data, or the data in the output queue has been lost due to overflow,
etc. '
! Request control (RQC) The device is requir.etli to be an active controller. Since this bit is not
used by MS9710C, it is always 0.
The device has completed the specified pending operation and ready
0 Operation complete (OPC) for receiving a new instruction. A
This bit responds only to the *OPC command and sets the operation
complete bit.

8-12

8.4 Standard Event Status Register

8.4.2 Details on query errors

No.

Item

Description

Incomplete program message

When a device receives an MTA from the controller before receiving a
program message terminator, it discards the incomplete message
which has been received so far and waits for the next program mes-
sage. To discard the incomplete program message, the device clears
the input/output buffer, reports a query error to the status report part,
and sets the standard status register bit 2 (query error bit).

Interruption of response mes-
sage output

When a device receives an MLA from the controller before complet-
ing output of a response message terminator, it automatically inter-
rupts output of the response message and waits for a next program
message. To interrupt output of the response message, the device
clears the input/output buffer, reports a query error to the status report
part, and sets the standard status register bit 2 (query error bit).

When the next program mes-
sage is sent without reading a
response message

When the device cannot output a response message because the con-
troller has output a program message (including a query message) and
the next program message in succession, the device discards the
response message and waits for the next program message. A query
error is reported to the status report part like item No. 2.

Output queue overflow

When a program message containing many query messages is execut-
ed one after another, too many response messages to be stored in the
output queue (256 bytes) may be generated. If more query messages
are input and the response messages to queries must be output, the out-
put queue overflows. When this happens, the device clears the output
queue and resets the response message generation part.

The device also sets the standard event status register bit 2 (query
error bit) in the status report part.

Section 8 Status Structure

8.4.3 Reading, writing, and clearing the standard event status register

This register is read destructively in response to the *ESR? common command. In other words,
Read this register is cleared after being read. The event bit assigned binary weights and converted to a
decimal value <NR1> is the response message.

Write This register cannot be written externally; however, it can be cleared.

This register is cleared in the following cases:

(1) A *CLS command is received.

Clearing (2) The power is turned on if the Power-ON status clear flag is True.
The device executing a Power-ON sequence first clears the standard event status register, then
records the events that have occurred in this sequence (e.g., PON event bit setting).

(3) An event is read in response to an *ESR? query command.

8.4.4 Reading, writing, and clearing the standard event status enable
register

This register is read non-destructively in response to the *ESR? common command. In other
Read words, this register is not cleared after being read. The response message is assigned binary
weights, converted from a binary value to a decimal value <NR 1>, and returned.

This register is written using an *ESS common command. Register bits 0 to 8 are assigned weights
Write 1,2,4,8, 16, 32, 64, and 128 respectively, so a total of values of the desired write data bits is sent
as <DECIMAL NUMERIC PROGRAM DATA>.

This register is cleared in the following cases:

(1) An *ESE command with its data value being 0 is received.

(2) The power is turned on with the Power-ON status clear flag in the True state or the power is
Clearing turned on when a *PSC command is not supported.

The standard event status register is not affected by the following:

(1) Change in the state of the IEEE 488.1-defined device clear function

(2) Reception of an *RST common command

(3) Reception of a *CLS common command

8-14

8.5 Extended Event Status Register

8.5 Extended Event Status Register

Devices conforming to IEEE 488.2 require register models for status byte and
standard event status registers including an enable register.

IEEE 488.2 assigns status byte register bit 7 (DIO 8) and bits 3 (DIO 4) to 0 (DIO
1) to the status summary bits transferred from an extended register model and

extended queue model.

As shown below, the MS9710C does not use bits 7, 1, and 0. It assigns bits 3 and
2 to END and ERROR summary bits for status summary bits transferred from the
extended register model.

Occurrence of -———————==-— \
service request

Standard event summary bit Standard event
Not used .
register
MAV i
MSS 6 RQS summary bit
ESB r A N
MAV o|g|(o|lo|O
iRl |.... Output Queue
[N VI B RO B
3
2
1 \ / ERROR event summary bit ERROR event
register model
END event summary bit END nt
Not used v = e . eve
register model

Status summary
message

Not used

Status Byte Register

Let’s take a look at definition, read, write, and clearing of END and ERROR

extended event register model bits.

8-15

Section 8 Status Structure

8.5.1 Definition of END event status register bits

This section explains END event status register model operation and names and
meanings of events.

disabled=0, enabled=128 (27)
disabled=0, enabled=64 (2%)
disabled=0, enabled=32 (25)
disabled=0, enabled=16 (2¢)
disabled=0, enabled=8 (2%)
disabled=0, enabled=4 (23
disabled=0, enabled=2 2"
disabled=0, enabled=1 (29
END Event Status Enable Register

et wit
Read with ESE2?.

|

ESB summary message bit

(to Status Byte register bit 2)

Z @ Z Not used
[6| @ | 6 | Not used
[5| @ | 5 [Not used
| 4 | @ | 4 [Execution complete
El @ | 3 [Execution complete
| 2 | @ | 2 [Transfer end
[1] @ | 1| Sweep stop
| 0| (a) | 0 [Measurement end
T END Event Status Register
. y A
[Logical OR |

olution calibration

Bit Event name Discription
7 Not used
Not used
5 Not used
. Completion of *RST, wavelength calibration, automatic axis alignment, or res-
4 Execution complete

Execution complete

Completion of power monitor 1-point measurement or sweep averaging

tion measurement

Transfer end Completion of transfer to FD or printer output
Sweep stop Single sweep stop
Completion of automatic measurement, analysis, peak/dip search, or applica-
0 Measurement end

8.5 Extended Event Status Register

8.5.2 Definition of ERROR event status register bits

This section explains ERROR event status register model operation and names

and meanings of event bits.

disabled=0, enabled=128 (27)
disabled=0, enabled=64 (2°)
disabled=0, enabled=32 (2°)
disabled=0, enabled=16 (2%
disabled=0, enabled=8 (2%)
disabled=0, enabled=4 (22)
disabled=0, enabled=2 2"
disabled=0, enabled=1 (29
ERROR event status enable register

et with ESE3<NR
Read with ESE3?.

(&)~

Not used

)
&)

Not used

)
&)

Not used

D
&)

Not used

Not used

Not used

7]
6]
5
4]
3
2]
1]
0]

Peak / Dip

ol=[ve|s]a]o]~]

il

| 0 | RES-Uncal
ERROR event status register

L Logical OR

|

ESB summary message bit
(to Status Byte register bit 3)

Bit

Event name

Description

Not used

Not used

Not used

Not used

Not used

Not used

Peak/Dip Error

Occurrence of peak/dip detection error

(=3 R I\ UV I N N/ Ko N DN

RES-Uncal

Occurrence of RES-Uncal error

8-17

Section 8 Status Structure

8.5.3 Reading, writing, and clearing the extended event status register

Read

This register is read destructively in response to the *ESR? common command. In other words,
this register is cleared after being read. The event bit assigned binary weights and converted to a
decimal value <NR1> is the response message.

Write

This register cannot be written externally; however, it can be cleared.

Clearing

This register is cleared in the following cases:

(1) A #CLS command is received.

(2) The power is turned on if the Power-ON status clear flag is True.
The device executing a Power-ON sequence first clears the standard event status register, then
records the events that have occurred in this sequence (e.g., PON event bit setting).

(3) An event is read in response to an *ESR? query command.

8.5.4 Reading, writing, and clearing the extended event status enable
register

Read

This register is read non-destructively in response to the *ESR? common command. In other
words, this register is not cleared after being read. The response message is assigned binary
weights, converted from a binary value to a decimal value <NR1>, and returned.

Write

This register is written using an *ESS common command. Register bits O to 8 are assigned weights
1,2, 4,8, 16, 32, 64, and 128 respectively, so a total of values of the desired write data bits is sent
as <DECIMAL NUMERIC PROGRAM DATA>.

Clearing

This register is cleared in the following cases:

(1) An *ESE command with its data value being 0 is received.

(2) The power is turned on with the Power-ON status clear flag in the True state or the power is
turned on when a *PSC command is not supported.

The standard event status register is not affected by the following:

(1) Change in the state of the IEEE 488.1-defined device clear function

(2) Reception of an *RST common command

(3) Reception of a *CLS common command

8-18

8.6 Queue Model

8.6 Queue Model

The right-hand illustration shown below is a queue model having a status data
structure. A queue is a data structure in which data is arranged sequentially, pro-
viding information such as sequential status. A summary message indicates that
such information exists in the queue. Queue contents are read by an handshake
when the device is in the talker active state (TACS).

MAV (message available)

Status Byte Register

- summary bit
MSS 6 RQS
ESB '
[Data [Data
Data Data
MAV
Data Data
3) Data Data
Data Data
5 L Data L Data
Queue Output Queue
1
MAV (Message Available) summary bit
0 indicating the output queue is not empt

The queue that outputs an MAV summary bit to status byte register bit 4 is called
an “output queue.” This queue is mandatory. The queue that can output an MAC
summary message to one of status byte register bits O to 3 and 7 is simply called a
“queue.” It is optional. A summary message from the register model can also be
output to status byte register bits 0 to 3 and 7, so the summary message type
depends on the device type.

We use status byte register bit 7 for the summary message bit transferred from the
“queue.” However, we do not use this bit if only the “output queue” suffices and

therefore the “queue” need not be used.

The table on the next page provides a comparison of the “output queue” to general
queues.

8-19

Section 8 Status Structure

Table Comparsion of Output Queue to General Queues

interface using only an IEEE 488.2 message
exchange protocol.

Item Output queue Queue
Data input/output type | FIFO type Not necessary to be FIFO type
Response message units are read using only | Response message units are read with
Read an IEEE 488.2 message exchange protocol. | device-dependent query commands.
The type of these response message units | These response message units must be of
depends on the query type. the same type.
Program message elements are not written
directly. Program message elements are not writ-
Write This queue communicates with the system | ten directly.

Coded device information is indicated.

Summary message

When the output queue is not empty, the sum-
mary message bit becomes True (1).

When it is empty, the summary message bit
becomes False (0).

The MAV summary message is used to syn-
chronize information exchange between a
device and the controller.

When the queue is not empty, the
summary message bit becomes True (1).
When it is empty, the summary message
bit becomes False (0).

Clearing

This queue is cleared in the following cases:

(a) All items in the queue are read.

(b) A DCL bus command is received for mes-
sage exchange.

(c) The PON bit becomes True at Power-ON.

(d) Operation is unterminated or interrupted.

This queue is cleared in the following
cases:

(a) All items in the queue are read.

(b) A *CLS command is received.

(c) Other device-dependent means

8-20.

Section 9 Details on Device Messages

9.1

9.2

9.3

9.4

9.5

9.6

9.7

9.8

9.9

9.10
9.1
9.12
9.13
9.14
9.15
9.16
9.17
9.18
9.19
9.20
9.21
9.22
9.23
9.24
9.25
9.26
9.27
9.28
9.29
9.30
9.31
9.32
9.33
9.34

9.35

9.36

9.37
9.38
9.39
9.40
9.41
9.42
9.43
9.44
9.45
9.46
9.47

ALIN [Auto Alignment] ..o 9-2
ANA [ANAIYSIS] .c.vverriiiiiren e, 9-3
ANAR [Spectrum Analysis Result] 9-6
AP [Application]ccceeviniiiiiiiniiinis 9-7
APR [Application Result]ccccecvrrunenne 9-16
ARED [Acutual Resolution Data] 9-25
ARES [Actual Resolution].........ccccoeveninns 9-25
ATT [Optical Attenuater]cccccevveerueenne 9-25
AUT [Auto Measure]ccoceeverveneecnnnnne 9-26
AVS [Sweep Average]cceveveviinennins 9-26
AVT [Point Average]c.ccooveeveveneneenennne 9-27
BKL [Back Light] ..cccceovvieveenieneireeieenies 9-27
BUZ [Buzzer ON/OFF]ccoevevviniinenenne. 9-28
CNT [Center Wavelength]ccceceuine 9-28
CPY [COPY] -eevererrerrieerirenienrecee e 9-29
CRCL [Condition Recall]ccccoevereneennn 9-29
CSAYV [Condition Save]cccccveveeenene 9-29
DATE [Date Set]ccccevvvininviiniininn, 9-30
DBA [Memory Data A]ccceevveenevvcnennne 9-30
DBB [Memory Data B]ccccovevvuieennnne. 9-31
DCA [Data Condition Memory A] 9-31
DCB [Data Condition Memory B]J............. 9-32
DEL [FD File Delete]ccccccvvevvrenirnennne 9-32
DMA [Memory Data A]cccccovvveiiininins 9-33
DMB [Memory Data B]cccceneeiiiens 9-34
DMD [Display Mode]cccccccceriiiiininnne. 9-35
DMK [A Marker]ccoevineeienviiiiniinennens 9-36
DPS [Dip Search]cccccoevvvericninininnenes 9-37
DQA [Memory Data A].....ccccocevevrmencnnnn 9-38
DQB [Memory Data B]cccccoccereinennen 9-38
DRG [Dynamicrange Mode]c....... 9-39
EMK [Marker Off]cccoveviviniriniinnnnn, 9-39
ERR [EFTOr] .ooveeieieecieereeeeceeeeiee e 9-39
ESE1 [Extended Event Status Enable

Register1] .o, 9-40
ESE2 [Extended Event Status Enable

Register2] ... 9-40
ESES3 [Extended Event Status Enable

Register3]ccovvieeneeeeieee e 9-40
ESR1 [Extended Event Status Register1].... 9-41
ESR2 [Extended Event Status Register2] 9-41
ESR3 [Extended Event Status Register3] 9-41
FED [Feed] ..cooviriieniriieciercrcneieee 9-42
FMT [FD Format]c.cocvevvveeneeeninnieeenne 9-42
FOPT [FD File Option]cccccevvvrvverncienne 9-42
GCL [Graph Clear]ccceviviivricniinene 9-43
HEAD [Header]ccoeeiienienneenecnecenne 9-43
ITM [Interval Time]ccccoecervciniiireennn. 9-43
LCD [Display Color]ccccuvcvevrrmenirnennne 9-44
LLV [Linear Scal€]cccceevveevenirercceneenns 9-45

9.48
9.49
9.50
9.51
9.52
9.53
9.54
9.55
9.56

9.57
9.58
9.59
9.60
9.61
9.62
9.63
9.64
9.65
9.66
9.67
9.68
9.69
9.70
9.71
9.72
9.73
9.74
9.75
9.76
9.77
9.78
9.79
9.80
9.81
9.82
9.83
9.84
9.85
9.86
9.87
9.88
9.89
9.90
9.91
9.92
9.93
9.94
9.95
9.96

LOFS [Level Offset]ccvvvvrverceerieeiiiene 9-45
LOG [Log Scal€] ...cccoveueinenerrreeerieienns 9-46
LVS [Level Scale]ccoeevvenenieiieneeiene 9-46
MDM [Modulation Mode]ccccceeverunenne 9-46
MKA [Wavelength Marker A]cc..cc..c... 9-47
MKB [Wavelength Marker B] 9-47
MKC [Level Marker CJ]ccooveevvrvcnennneene 9-48
MKD [Level Marker DJccccceverneriienienne 9-49
MKV [Marker Value Wavelength/

Frequency Select]ccccevvrvevvenincnnennene 9-50
MOD [Measure Mode]cccceveereriicnens 9-50
MPT [Sumpling (Measureing) Points]....... 9-51
MSL [Memory Select]cccoevveriiiennens 9-51
OPT [Light OUtPUL]evvevvereeerceecereeieee 9-51
e —— 9-52
PKC [Peak — Center].....cccceveeeereveciennnns 9-52
PKL [Peak — Level]cccoovviviiiiienne 9-52
PKS [Peak Search]......c.cccevveenneeeverneenns 9-53
PWR [Power Monitor]ccceevervieernieenne 9-54
RCAL [Resolution Calibration]................. 9-54
PWRR [Power Monitor Result] 9-55
RCL [FD File Recall].......cccevvrerirenrennenn 9-55
RES [ReSOIUION]oveveieiiiciencieiiee 9-56
RLV [Reference Level Scale] 9-56
SAV [FD File Save]ccooveeveeveceecnennens 9-57
SMT [SMOOh] ..ceeiieeviiceeeeieeeee 9-57
SPC [Spectrum]........cccoeevenienieenceienneenne 9-57
SPN [Span Wavelength]cccccevennnne. 9-58
SRT [Repeat Sweep]....ccoceveverveeeiinnnnenns

SSI [Single SWeep].....ccvvrvervvinirecieninens

SST [Sweep StOp] .vevvveerreerieercenesireenneens

STA [Start Wavelength]

STO [Stop Wavelength]cceccevvecvrnnnnne 9-59
TDL [EXT-trigger Delay Time]c.cccvnee 9-60
TDSP [Time & Date Display On/Off] 9-60
TER [Title Erase] .ccoevvevveervevencrerneeenennns 9-60
TIME [Time Set] ..coovevricieeeeneeieeeeens 9-61

TLSA [Measure Mode (Adjust to TLS)] ...

TLST [Measure Mode (TLS Tracking)] 9-62
TMC [TMKR — Center]ccccvceevvevereennene. 9-62
TMK [Trace Marker]ccccocevverineeninennnns 9-62
TRM [Terminater]ccccoveerveeniiieneinineenns 9-63
TSL [Trace Select]covcvvveervenreincnennns 9-64
TTL[THIE] ceeveieeeieeeeeec et 9-64
VBW [Video Band Width]cccvvveuueennee. 9-65
WCAL [Wavelength Calibration] 9-65
WDP [Vacuum/Air Set]ccoceevrervenennen. 9-66
WOFS [Wavelength Offset]ccevunee. 9-66

WSS [Setting Wavelength Start and Stop] ...
ZMK [Zone Marker]ccccoveeveevnncenennnen,

9-1

]
o
o
]
(/2]
(7]
()]
=
o
2
>
<)
o
c
o
L]
©
ot
)]
(o]

Section 9 Details on Device Messages

9.1

ALIN [Auto Alignment]

B Function
With the measuring light radiated, executes auto alignment to create alignment
position data. When auto alignment is complete, bit 4 (execution complete bit) of
the extended event register (ESR2) is set to 1.
Header Program Query Response
ALIN ALIN n ALIN ? m
B - Valueofn
n =0: Specify the alignment position data as the default.
=1: Execute auto alignment to create alignment position data.
=2: Terminate auto alignment forcibly.
B ¢ Valueof m

m=0: Normal termination of waveform calibration
=1: Wavelength calibration is in process.

=2: Wavelength calibration has been interrupted due to an insufficient light level.
=3: Wavelength calibration has been interrupted due to any other fault.

9.2 ANA [Analysis] ANA ENV [Spectrum Analysis (Envelope)]

9.2 ANA [Analysis]
ANA ENV [Spectrum Analysis (Envelope)]

B Function
Carries out a spectrum analysis using an envelope method.
When the processing is complete, bit 0 (measurement end bit) of the extended
event status register (ESR2) is set to 1.

Header Program Query Response
ANA ANA ENV,r ANA? ENV,r
B Value of r

ris acutlevel. The unit is always dB.
Data range: 0.1 <r<20.0

B Initial setting value

r is a backed up value.

H Default
r=3(dB)

ANA RMS [Spectrum Analysis (RMS)]

H Function
Carries out a spectrum analysis using an RMS method.
When the processing is complete, bit 0 (measurement end bit) of the extended
event status register (ESR2) is set to 1.

Header Program Query Response
ANA ANA RMS, 1,k ANA ? RMS, 1, k

B ¢ Valueofr

ris a slice level. The unit is always dB.
Data range: 0.1 <r < 30.0

¢ Value of k

k is a coefficient (k). Input one of the following values
1,2,2.35,3

0
[
o
®
]
7]
]

=
]

2
>
o

(a]
c
o

2

®

L 4
]

(a]

B Initial setting value
r and k are backed up values.

B Default
r=0(dB), k=2.35

Section 9 Details on Device Messages

ANA ndB [Spectrum Analysis (ndB - Loss)]

B Function
Carries out a spectrum analysis using the ndB-Loss method.
When the processing is complete, bit 0 (measurement end bit) of the extended
event status register (ESR2) is set to 1.

Header Program Query Response
ANA ANA NDB, r ANA? NDB, r

B Valueofr
r is an attenuation value. The unit is always dB.
Data range: 0.1 <r < 50.0

B Initial setting value
r is a backed up value.

B Default

r=20(dB)

ANA THR [Spectrum Analysis (Threshold)]

H Function
Carries out a spectrum analysis using the threshold method.
When the processing is complete, bit O (measurement end bit) of the extended
event status register (ESR2) is set to 1.

Header Program Query Response
ANA ANA THR, r ANA? THR, r

B Value of r
risacutlevel. The unit is always dB.
Data range: 0.1 £r <50.0

B Initial setting value
1 is a backed up value.

B Default

9-4

r=20(dB)

9.2 ANA [Analysis] ANA ENV [Spectrum Analysis (Envelope)]

ANA SMSR [Spectrum Analysis (SMSR)]

B Function
Carries out an SMSR analysis.
When the processing is complete, bit 0 (measurement end bit) of the extended
event status register (ESR2) is set to 1.

Header Program Query Response
ANA ANA SMSR, s ANA? SMSR, s

B Valueofs
s =2NDPEAK: Carry out an analysis with respect to the side mode at second
highest level.
= LEFT: Carry out an analysis with respect to the side mode on the left
(shorter wavelength side) of the peak wave.
= RIGHT: Carry out an analysis with respect to the side mode on the right
(shorter wavelength side) of the peak wave.

H Initial setting value

s is a backed up value.

M Default
s =2NDPEAK

ANA PWR [Spectrum Analysis (Spectrum Power)]

B Function

Carries out power integration.

When the processing is complete, bit 0 (measurement end bit) of the extended
event'status register (ESR2) is set to 1.

Header Program Query Response
ANA ANA PWR ANA? PWR

ANA OFF [Spectrum Analysis Off]

0
o
o
@
]
]
(]
=
o
L2
>
]
(@]
c
o
2
f:
o
(a]

B Function
Turns off the analysis mode.
Header Program Query Response
ANA ANA OFF ANA ? OFF

Section 9 Details on Device Messages

9.3 ANAR [Spectrum Analysis Result]

B Function

Reads the result of the analysis made with ANA command.
Response data is the result of the last analysis made by executing an AND command.
There are four types of response data formats:

Header

Program Query Response

ANAR

None ANAR? Ac,hw : Type 1
Ac,hw,n :Type2
AX,A1 :Type3
p,AcC : Type 4

B Response data

« Valueof A c

« Value of hw

« Value of n

» Value of AL

« Value of Al

- Value of p

Type 1: Envelope, Threshold, RMS
Type 2: ndB - Loss

Type 3: SMSR

Type 4: Spectrum - Power

A c is the center wavelength or frequency obtained through an analysis. The unit
is nm or THz, and a value is output down to the fourth decimal place.

The value is tail-zero-suppressed.

If analysis is impossible, -1 is output.

hw is the spectrum width obtained through an analysis. The unit is always nm,
and a value is output down to the third decimal place.

The value is tail-zero-suppressed.

If analysis is impossible, —1 is output.

n is the number of axis modes obtained through the analysis carried out using an
ndB-Loss method. A positive integer is output.
If analysis is impossible, —1 is output.

A) is the difference in waveform length between the main peak and the side
mode obtained through the SMSR analysis. The unit is always nm, and a value is
output down to the third decimal place.

The value is tail-zero-suppressed.

If analysis is impossible, —1 is output.

A 1is the difference in level between the main peak and the side mode obtained
through the SMSR analysis. The unit is dB, and a value is output down to the
second decimal place.

If analysis is impossible, “999.99 is output.

p is a power integration result obtained through the spectrum power analysis. The
unit is always dBm, and a value is output down to the second decimal place.

9.4 AP [Application]

9.4 AP [Application]
AP DFB [Application (DFB - LD)]

B Function
Measures DFB-LD.
When the processing is complete, bit O (measurement end bit) of the extended
event status register (ESR2) is set to 1.

Header Program Query Response
AP AP DFB,s,n’ AP? DFB, s, n

B ¢ Valueofs
s =2NDPEAK: Carry out an analysis with respect to the side mode at second

highest level.

=LEFT: Carry out an analysis with respect to the side mode on the left
(shorter wavelength side) of the peak wave.

=RIGHT: Carry out an analysis with respect to the side mode on the right

(shorter wavelength side) of the peak wave.

¢ Value of n

n is the value used for ndB-width measurement (wavelength reduced by n dB).
The unit is dB. Input an integer.
Datarange: 1<n<50

B Initial setting value
s and n are backed up values.

B Default
s = 2NDPEAK
n=20 (dB)

Section 9 Details on Device Messages

AP FP [Application (FP - LD)]

B Function

Measures FP-LD.
When the processing is complete, bit 0 (measurement end bit) of the extended
event status register (ESR2) is set to 1.

Header

Program Query Response

AP

AP FP,n AP ? FP,n

H Valueofn

B Initial setting value

W Default

n is the axis mode cut level (difference between the peak level and the cut level)
used for measuring the number of axis modes. The unit is dB. Input an integer.
Datarange: 1 <n<50

n is a backed up value.

n=20(dB)

AP LED [Application (LED)]

B Function

Measures LED.
When the processing is complete, bit O (measurement end bit) of the extended
event status register (ESR2) is set to 1.

Header

Program Query Response

AP

AP LED,n,p AP? LED,n,p

B e+ Valueofn

* Value of p

B Initial setting value

B Default

n is the value used for ndB-width measurement (ndB-down wave width). The
unit is dB. Input an integer.
Datarange: 1 <n<50

p is a total power compensation value. The unit is dB. Input a value is input down
to the second decimal place.
Data range: —10.00 <n <+ 10.00

n and p are backed up values.

n=23(dB)
p=0(dB)

9.4 AP [Application]

AP PMD [Application (PMD)]

B Function
Measures PMD (Polarization Mode Dispersion). (Auto measurement)
When the processing is complete, bit 0 (measurement end bit) of the extended
event status register (ESR2) is set to 1.
Header Program Query Response
AP AP PMD, n AP? PMD,n,m

H -+ Valueofn

¢ Value of m

B Initial setting value

B Default

AP AMP [Application (Optical AMP)]

B Function

n is a mode coupling coefficient. Input a value down to the second decimal place.

Data range: 0.01 <n<1.00

m indicates a measurement mode.
m= 0: Auto measurement
= 1: Manual measurement

n, PIs a backed up value.

n=1
m= 0 (Auto)

Sets/reads the optical AMP measurement mode.

Header

Program

Query

Response

AP

AP AMP

AP?

AMP

9-9

Section 9 Details on Device Messages

AP AMP MSL [Application (Optical AMP Memory Select)]

H Function
Selects a measurement memory for optical AMP measurement.
Setting/read is enabled only in the optical AMP measurement mode.
Header Program Query Response
AP AP AMP, MSL,s AP ? AMP,MSL AMP,MSL,s

B Valueofs
s indicates a measurement memory.
s =PIN: Pin memory used to measure the light input to the optical amplifier.
=POUT: Pout memory used to measure the light output from the optical am-
plifier.

B Initial setting value
s =PIN

AP AMP CAL [Application (Optical AMP Resolution Calibration)]

B Function
Calibrates the resolution of the spectrum analyzer for optical AMP measurement.
When the calibration is complete, bit 4 (execution complete bit) of the extended
event status register (ESR2) is set to 1.
Setting/read is enabled only in the optical AMP measurement mode.

Header Program Query Response

AP AP AMP,CAL,n AP ? AMP,CAL AMP,CAL,m

B Valueofn
O Program
Make the following setting with n.
n = 0: Specify the current resolution calibration data as the default.
= 1: Carry out resolution calibration to obtain resolution calibration data.
O Response
m indicates a resolution calibration state.
m = 0: Resolution calibration has been terminated normally.
= 1: Resolution calibration has been interrupted due to an insufficient
light level.
= 2: Resolutijon calibration has been interrupted due to any other fault.

9-10

9.4 AP [Application]

AP AMP PRM [Application (Optical AMP Parameter)]

B Function
Sets parameters used for optical AMP measurement.
Setting/read is enabled only in the optical AMP measurement mode.
Header Program Query Response
AP AP AMP,PRM, AP ? AMP,PRM AMP,PRM,
a,b,c.d.e.f,gh.ij.k a,b,c.d.e.f,ghi,j.k
B - Value of a [NF (S-ASE)/NF (Total)]

Select an NF calculation mode between NF (S-ASE) and NF (TOTAL).
a =0: NF (S-ASE)
= 1: NF (Total)

* Value of b [Method]

Select an NF measurement method.

b = 0: NF measurement made without using a spectrum division method
= 1. NF measurement made using a spectrum division method
= 2: NF measurement made using a polarization nullification method.
= 3: NF measurement made using a pulse method
=4: WDM measurement

¢ Value of ¢ [Gauss/Mean]

Select a fitting method used for obtaining an ASE level (P ASE).
¢ =0: Gauss fitting
=1: Mean

* Value of d [Fitting span]

Specify a span, which represents the shortest and longest wavelengths subject to
the fitting carried out to obtain an ASE level (P ASE), with the signal light cen-
tered.

The unit is nm. Input a value down to the second decimal place.

Data range: 0.10 nm < d < 100.00 nm

* Value of e [Masked Span]

Specify a span, which represents the wavelength range (near the signal light)
where fitting is carried out to obtain an ASE level (P ASE), with the signal light
centered.

Fitting is carried out in the d-specified range excluding the e-specified range.
The unit is always nm. Input a value down to the second decimal place.

Data range: 0.10 nm <d < 100.00 nm

Note:

If the d- and e-specified wavelength area for fitting exceeds the measure-
ment range, the wavelength data in this area is excluded from fitting.

9-11

Section 9 Details on Device Messages

¢ Value of f [Pin Loss]

Specify the difference between the level of the signal light input to the optical
spectrum analyzer and the level of the signal light input to the optical amplifier.
The unit is dB. Input a value down to the second decimal place.

Data range: -10.00 dB < f <+ 10.00 dB

* Value of g [Pout Loss]

Specify the difference between the level of the optical amplifier output signal
input to the optical spectrum analyzer and the actual level of the optical amplifier
output signal.

The unit is dB. Input a value down to the second decimal place.

Data range: —-10.00 dB < g < + 10.00 dB

* Value of h [NF Cal]

Specify a value for calibrating the result of NF calculation.
Input a value down to the third decimal place.
Data range: 0.100 < h < 10.000

* Value of i [0.BPFL-Cal]

Specify the difference in level between the pass and block ranges of the optical
band pass filter inserted between the optical amplifier and the optical spectrum
analyzer.inserted.

The unit is dB. Input a value down to the second decimal place.

Data range: 0.00 dB <i < 30.00 dB

* Value of j [O.BPF BW]

Specify an effective optical filter width (total ASE bandwidth) used for NF (total)
calculation.

The unit is always nm. Input a value down to the second decimal place.

Data range: 0.01 nm £ j £999.99 nm

* Value of k [Pol Loss]

H Initial setting value

B Default

9-12

Specify a level loss at the polarization control nulling stage used for polarization
nullification.

The unit is dB. Input a value down to the second decimal place.

Data range: —-10.00 dB <k <10.00 dB

a to k are backed up values.

a= 0 (NF (S-ASE))
b= 0 (Spect Div On)
c= 0 (Gauss)

d= 5.0 (nm)

e= 2.0 (nm)

f= 0.00 (dB)

g= 0.00 (dB)

h= 1.000

i= 0.00 (dB)

j= 3.00 (nm)

k= 0 (dB)

9.4 AP [Application]

AP AMP ASE [Application (Pout — Pase)]

B Function

During the measurement made using a polarization nullification method, copies
the spectrum temporarily written into the Pout memory to the internal memory
Pase as an ASE.

Setting is enabled only in the optical AMP measurement mode.

Header

Program Query Response

AP

AP AMP, ASE

AP WDM [Application (WDM)]

B Function
Sets to WDM Application
The display mode at this time uses the previously backed-up value.
Header Program Query Response
AP AP WDM AP?WDM WDM, m
AP WDM, SLV, n AP?WDM, SLV WEM, SLV, n
AP WDM, MPK AP?WDM, MPK WDM, MPK
APWDM, SNR, d, AA, s | AP?WEM, SNR WDM, SNE, d, A A, s
AP WDM, REL, r AP?WDM, REL WDM, REL, r
AP WDM, TBL, d, AL, s | AP?WDM, TBL WDM, TBL,d, A A, s
B Send Data
¢ Value of n
Sets splice level at splice level setting command (SLV)
n =1to 50 [dB]
* Value of d

e Value of AL

Sets noise detection direction at SNR display
d =LEFT: Left side
= RIGHT: Right side
=HIGHER: Side with highest level
= AVERAGE: Average of LEFT and RIGHT

Setting for detection position using wavelength difference at SNR display.
Evaluates SNR of point at A\ from peak in direction specified at s.

A\ =0 [nm] or OFF : Auto-detects Dip in specified direction

AA =0 to +20 [nm] (0.01 step)

Section 9 Details on Device Messages

« Value of r

» Value of s

B Response Data

Sets reference peak to r number at REL (Relative) display
r =1to 128

Sets whether the detected noise value should be normalized with the effective

resolution.
s = "ONII
- "OFF"

m indicates the display mode as follows:
m = MPK: Multi Peak display
= SNR: SNR display
=REL: Relative display
Refer to the send data items for n, s, AA, and r.

AP WDM, PKT, t [Application WDM Peak Type]

B Function

Sets the method for detecting the signal wavelength in the WDM application.

Header

Program Query Response

AP

AP WDM, PKT, t AP ? WDM, PKT WDM, PKT, t

B Parameters

» Value of t

B Initial setting value

B Default

9-14

Selects a method for detecting the signal wavelength in the WDM application.

O MAX ...eneee The wavelength at the maximum point shall be the signal
wavelength.

O THRESHOLD .. The Threshold analysis central wavelength shall be the sig-
nal wavelength.

tis a backed up value.

t=MAX

9.4 AP [Application]

AP WDM, TCL, u [Application <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>