Spectrum Master™ MS2721A High Performance Handheld Spectrum Analyzer Spectrum**Master** (1) 100 kHz to 7.1 GHz +43 dBm maximum safe input power Ethernet and USB 2.0 remote control -100 dBc/Hz @ 10 kHz offset at 7.1 GHz # High Performance Handheld Spectrum Analyzer The Anritsu MS2721A is the most advanced ultra-portable spectrum analyzer on the market, featuring unparalleled performance and size at a modest price. # ≤-153 dBm Displayed Average Noise Level Typical @ 1 GHz Unprecedented in handheld battery powered spectrum analyzers, the sensitivity of the MS2721A delivers the ability to measure very low level signals. Coupled with a wide range of resolution bandwidth choices, you can configure the Spectrum Master to meet your most challenging measurement needs. As the spectrum becomes more and more congested, the ability to measure low level signals becomes more and more important not only for interference detection but also for wireless system planning. # Field Use Measuring a Small Signal Wide Dynamic Range — Measuring a small signal in the presence of a very large signal Operating convenience is of paramount importance when equipment is used in the field. The input attenuation value can be tied to the reference level, reducing the number of parameters a field technician may have to set. The RBW/VBW and the span/RBW ratios can be set to values that are best for the measurements being made, further easing the technician's burden and reducing the chances of errors. Thousands of traces with names up to 15 characters long may be saved in the 64 MB non-volatile compact flash memory. These traces can later be copied into a PC using the built-in USB 2.0 connector or the 10/100 Mbit Ethernet connection. Commonly needed measurements are built in. These include field strength, occupied bandwidth, channel power, adjacent channel power ratio, AM/FM/SSB demodulation and carrier to interference (C/I) ratio measurements. The MS2721A Spectrum Master has a very wide dynamic range, allowing measurement of very small signals in the presence of much larger signals. These pictures show a measurement of a -114 dBm signal with and without the presence of a -22 dBm signal only 20 kHz away. | Measurement Area | Wide RBW & VBW Range | AM/FM Demod | Channel Power | ACPR | OBW | Field Strength | C/I | | |------------------------|----------------------|-------------|---------------|------|-----|----------------|-----|--| | Cellular Measurements | | | yes | yes | yes | yes | yes | | | WiFi Measurements | | | yes | | yes | yes | yes | | | Spectrum Monitoring | yes | yes | | | | | | | | Interference Detection | yes | yes | | | | yes | | | # Lab Use Powerline related sidebands on a synthesized signal generator For maximum flexibility, sweep triggering can be set to free run, or to do a single sweep. In zero span, the sweep can be set to trigger when a signal meets or exceeds a certain power level or it can be externally triggered. The span can be set anywhere from $10~\mathrm{Hz}$ to $7.1~\mathrm{GHz}$ in addition to zero span. Using battery-powered equipment to measure powerline related sidebands on a signal source removes any question as to the source of the sidebands. Continuous frequency coverage from 100 kHz to 7.1 GHz gives the wireless professional the performance needed for the most demanding measurements. Whether your need is for spectrum monitoring, WiFi and WiFi5 installation and testing, RF and microwave signal measurements or cellular signal measurements, the MS2721A Spectrum Master gives you the tools you need to make the job easier and more productive. The built-in AM/FM/SSB demodulator simplifies the job of identifying interfering signals. Typical Phase Noise Performance # **Features** AM, FM and SSB Demodulation Multiple Language Support Segmented Limit Lines #### **Light Weight** Weighing about six pounds fully loaded, including a Li-Ion battery, this fully functional handheld spectrum analyzer is light enough to take anywhere, including up a tower. #### AM/FM Demodulation A built-in demodulator for AM, narrowband FM, wideband FM and single sideband (selectable USB and LSB) allows a technician to easily identify interfering signals. The demodulated audio can be heard either through the built-in speaker or through a standard headset. A demodulation marker is provided for easy tuning. #### **Remote Tools** Imagine sitting at your desk while controlling an MS2721A that is miles away, seeing the screen display and operating with an interface that looks exactly like the instrument itself. That is what Remote Tools lets you do. ## Local Language Support The MS2721A features eight languages English, Spanish, German, French, Japanese, Chinese, Italian and Korean, two custom user-defined languages can be uploaded into the instrument using Master Software Tools, supplied with the instrument. ## Fast Sweep Speed The MS2721A can do a full span sweep in ≤900 milliseconds, and sweep speed in zero span can be set from 50 microseconds up to 4294 seconds. This is faster and more flexible than any portable spectrum analyzer on the market today, simplifying the capture of intermittent interference signals. # +43 dBm Maximum Safe Input Level Because the MS2721A can survive an input signal of +43 dBm (20 watts) without damage, you can rest assured that the MS2721A can survive in even the toughest RF environments. # **Spectrum Monitoring** A critical function of any spectrum analyzer is the ability to accurately view a portion of the RF and microwave spectrum. The MS2721A performs this function admirably thanks to the wide frequency range and excellent dynamic range. A built-in 64 MB compact flash memory module allows thousands of traces to be stored. The external compact flash connector allows additional compact flash memory to expand the trace storage without limit. #### **Limit Lines** The MS2721A includes two types of limit lines, lower limit lines and upper limit lines. Limit lines may be used either for visual reference or for pass/fail criteria by implementing limit alarms. Limit alarm failures are reported if a signal is above the upper limit line or below the lower limit line. Each limit line may consist of up to 40 segments. # **Features** Multiple Markers plus Multiple Delta Markers #### Multiple Markers Display up to six markers on screen, each with delta marker capability. In addition, you may select a marker table that simultaneously shows the status of all markers. In the table you can see the frequency and amplitude measurement value for all markers, along with delta frequency and delta amplitude. Each marker can have not only a measurement reference frequency but also a delta frequency and delta amplitude, effectively giving you up to twelve markers if you need them! #### **Noise Markers** The capability to measure noise level in terms of dBm/Hz or dB $\mu V/Hz$ is a standard feature of the MS2721A. ## **Frequency Counter Markers** The MS2721A Spectrum Master has frequency counter markers with resolution to 1 Hz. Tie this capability to an external precision time base to get complementary accuracy. #### **Functions** | Multiple Marker | Display up to six markers on screen, each marker includes a delta marker. | | | | |---------------------------------------|--|--|--|--| | Marker Table | Display a table of up to six marker frequency and amplitude values plus delta marker frequency offset and amplitude. | | | | | Upper/Lower Limit Fixed and Segmented | Each upper and lower limit can be made up of between one and 40 segments. | | | | #### **Smart Measurements** | Occupied Bandwidth | Measures 99.99% to 1% power bandwidth of a spectrum. | | | | |------------------------|---|--|--|--| | Channel Power | Measures the total power in a specified bandwidth. | | | | | C/I | Measures the carrier to interference ratio in a specified bandwidth. | | | | | ACPR | Measures power levels in the channels immediately above and below the center channel. | | | | | Field Strength | Uses antenna calibration tables to measure dBm/meter or dBmV/meter. | | | | | AM/FM/SSB Demodulation | Allows the user to listen to interfering signals. De-emphasis is included for narrow-band FM and wideband FM. Upper Sideband and Lower Sideband demodulation includes a BFO that can be tuned ± 10 kHz from the center frequency. | | | | # Measurements Occupied Bandwidth Adjacent Channel Power Ratio #### **Smart Measurements** The MS2721A has dedicated routines for one-button measurements of field strength, channel power, occupied bandwidth, Adjacent Channel Power Ratio (ACPR) and C/I. These are increasingly critical measurements for today's wireless communication systems. The simple interface for these complex measurements significantly reduces test time and increases analyzer usability. ## Fast Sweep Speed The MS2721A can do a full span sweep in <900 milliseconds, and sweep speed in zero span can be set from 50 microseconds to 4294 seconds. This is faster and more flexible than any portable spectrum analyzer on the market today, simplifying the capture of intermittent interference signals. #### Carrier to Interference Measurement As more 802.11 access points are installed, there is an increasing level of interference in the 2.4 GHz and 5.8 GHz bands occupied by this service and other devices such as cordless telephones. This measurement capability makes it simple for an access point installer to determine if the level of interference is sufficient to cause difficulty for users in the intended service area, and can show the need to change to another access channel. The wide frequency coverage of the MS2721A makes this the only spectrum analyzer you need to install and maintain 802.11a, 802.11b and 802.11g wireless networks. #### Occupied Bandwidth This measurement determines the amount of spectrum used by a modulated signal. You can choose between two different methods of determining bandwidth: the percent of power method or the "x" dB down method, where "x" can be from 3 dB to 100 dB down the skirts of the signal. # Adjacent Channel Power Ratio A common transmitter measurement is that of adjacent channel leakage power. This is the ratio of the amount of leakage power in an adjacent channel to the total transmitted power in the main channel, and is used to replace the traditional two-tone intermodulation distortion (IMD) test for system non-linear behavior. The result of an ACPR measurement can be expressed either as a power ratio or a power density. In order to calculate the upper and lower adjacent channel values, the MS2721A allows the adjustment of four parameters to meet specific measurement needs: main channel center frequency, measurement channel bandwidth, adjacent channel bandwidth and channel spacing. When an air interface standard is specified in the MS2721A, all these values are automatically set to the normal values for that standard. # Frequency | Frequency Range | 100 kHz to 7.1 GHz | |----------------------|--| | Tuning Resolution | 1 Hz | | Frequency Reference | Aging ±1 ppm/year
Accuracy ±1 ppm (25°C ±25°C) + long term drift | | Frequency Span | 10 Hz to 7.1 GHz plus 0 Hz (zero span) | | Span Accuracy | Accuracy ±1 ppm (25°C ±25°C) + long term drift | | Sweep Time | minimum 100 ms, 50 μs in zero span | | Sweep Time Accuracy | ±2% in zero span | | Sweep Trigger | Free run, Single, Video, External | | Resolution Bandwidth | (-3 dB width) 10 Hz to 3 MHz in 1-3 sequence ±10%, 8 MHz demodulation bandwidth | | Video Bandwidth | (-3 dB) 1 Hz to 3 MHz in 1-3 sequence | | SSB Phase Noise | -100 dBc/Hz max at 10, 20 and 30 kHz offset from carrier
-102 dBc/Hz max at 100 kHz offset from carrier | # General | Maximum Continuous Input | ≥10 dB attenuation, +30 dBm | |--------------------------|--| | Input Damage Level | ≥10 dB attenuation, >+43 dBm, ±50 Vdc <10 dB attenuation , >+23 dBm, ±50 Vdc Input protection relay opens at >30 dBm with ≥10 dB input attenuation and at approximately 10 to 23 dBm with <10 dB attenuation | | RF Input VSWR | 2.0:1 maximum, 1.5:1 typical (≥10 dB attenuation) | | Reference Level | Adjustable over amplitude range | | ESD Damage Level | >10 kV ≥10 dB attenuation | # Amplitude | Measurement Range | DANL to +30 dBm | |---|---| | Absolute amplitude accuracy
Power levels ≥–50 dBm, ≥35 dB
input attenuation, preamp off | 100 kHz to \leq 10 MHz \pm 1.5 dB >10 MHz to 4 GHz \pm 1.25 dB >4 GHz to 7.1 GHz \pm 1.75 dB | | Second Harmonic Distortion
(0 dB input attenuation, –30 dBm input) | -50 dBc, 0.05 to 0.75 GHz
-40 dBc, >0.75 to 1.05 GHz
-50 dBc, >1.05 to 1.4 GHz
-70 dBc, >1.4 to 2 GHz
-80 dBc, >2 GHz | # **Amplitude** Third Order Intercept (TOI) (preamplifier off) –20 dBm tones 100 kHz apart -20 dBm reference level 0 dB attenuation Frequency Typical 50 MHz to 300 MHz >8 dBm >300 MHz to 2.2 GHz >10 dBm >2.2 GHz to 2.8 GHz >15 dBm >2.8 GHz to 4.0 GHz >10 dBm >4.0 GHz to 7.1 MHz >13 dBm **Displayed Average Noise Level** DANL in 10 Hz RBW, 0 dB attentuation reference level -50 dBm > Frequency Preamp On Typical Max 10 MHz to 1 GHz -153 dBm -151 dBm >1 GHz to 2.2 GHz -149 dBm -150 dBm >2.2 GHz to 2.8 GHz -146 dBm -143 dBm >2.8 GHz to 4.0 GHz -150 dBm -149 dBm >4.0 GHz to 7.1 GHz -148 dBm -146 dBm Noise Figure (Derived from DANL measurement) 0 dB attenuation, reference level -50 dBm, 23°C, preamp on > Frequency Typical 10 MHz to 1.0 GHz 11 dB >1 GHz to 2.2 GHz 14 dB >2.2 GHz to 2.8 GHz 18 dB >2.8 GHz to 4.0 GHz 14 dB >4.0 GHz to 7.1 GHz 16 dB **Display Range** 2 to 15 dB/div in 1 dB steps. Ten divisions displayed. Log Scale modes: dBm, dBV, dBmv, dBµV **Amplitude Units** Linear Scale modes: nV, μ V, mV, V, kV, nW, μ W, mW, W, kW **Attenuator Range** 0 to 65 dB **Attenuator Resolution** 5 dB steps **Input-Related Spurious** -60 dBc max*, (<-70 dBc typical), -30 dBm input, 0 dB RF attenuation *Exceptions: Input Frequency Spur Level 1674 MHz -46 dBc max (-56 dBc typical), 0 to 2800 MHz -50 dBc max (-60 dBc typical) at (Finput - 1674 MHz) >1674 to 1774 MHz Residual Spurious, Preamp Off (RF input terminated, 0 dB RF attenuation) -90 dBm max**, 100 kHz to <3200 MHz -84 dBm max**, 3200 to 7100 MHz **Exceptions: Frequency Spur Level 250, 300 and 350 MHz -85 dBm max -80 dBm max (-90 dBm typical) ~4010 MHz ~5084 MHz -70 dBm max (-83 dBm typical) ~5894 MHz -75 dBm max (-87 dBm typical) ~7028 MHz -80 dBm max (-92 dBm typical) -100 dBm max Residual Spurious, Preamp On: (RF input terminated, 0 dB RF attenuation) #### Display Bright Color Transmissive LCD, Full SVGA, 8" #### Languages Built-in English, Spanish, French, German, Japanese, Chinese, Italian and Korean. The instrument also has the capability to have customized languages installed from Master Software Tools. #### Marker Modes Six Markers, Seven Modes: Standard, Delta, Marker to Peak, Marker to Center, Marker to Reference Level, Next Peak Left, Next Peak Right, All Markers Off, Noise Marker, Frequency Counter Marker (1 Hz resolution) #### **Sweeps** Full span, Zero span, Span Up/Span Down #### Detection Peak, RMS, Negative, Sample ## Memory Trace and Setup storage is limited only by the capacity of the installed Compact Flash card. For a 256 MB card, storage is greater than 5000 traces and 5000 setups. #### **Traces** Displayed Traces: Three traces with trace overlay. One trace is always the live data, two traces can be either stored data or traces which have been mathematically manipulated (such as C=A-B). #### Interfaces Type N female RF Connector BNC female connectors for external frequency reference and external trigger Mini-B USB 2.0 for data transfer to a PC RJ45 connector for Ethernet 10/100-BaseT 2.5 mm 3-wire headset connector # Size and Weight Size: 12 x 7 x 2.4 in. (313 x 211 x 77 mm) Weight: <6.4 lbs. (2.9 kg) (typical) #### **Environmental** MIL-PRF-28800F Class 2 Operating: -10°C to 55°C, humidity 85% or less Storage: -51°C to 71°C Altitude: 4600 meters, operating and non-operating ## Safety Conforms to EN 61010-1 for Class 1 portable equipment. # **Electromagnetic Compatibility** Meets European Community requirements for CE marking. Specifications are subject to change without notice. # **Ordering Information** | | Model: MS2721A - Handheld Spectrum Analyzer 100 kHz to 7.1 GHz | | 1030-87 | Band Pass Filter, 900 MHz band, 902-960 MHz,
Loss = 1.7 dB, N(m)-SMA(f) | | | |--|--|--|--------------------|--|--|--| | | 100 KI IZ to 1.1 GI IZ | | 1030-88 | Band Pass Filter, 1900 MHz band, 1.85-1.99 GHz, | | | | | Standard Accessories | | 1000 00 | Loss = 1.8 dB, N(m)-SMA(f) | | | | | 10580-00103 | User's Guide | 1030-89 | Band Pass Filter, 2400 MHz band, 2.4-2.5 GHz, | | | | | 61382 | Soft Carrying Case | | Loss = 1.9 dB, N(m)-SMA(f) | | | | | 40-168 | AC – DC Adapter | 510-97 | Adapter 7/16 DIN(f) to 7/16 DIN(f), 7.5 GHz | | | | | 806-62 | Automotive Cigarette Lighter/12 Volt DC Adapter | 61382 | Soft carrying case | | | | | 2300-498 | Master Software Tools CD ROM | 40-168 | AC/DC adapter | | | | | 2000-1360 | USB A-mini B cable | 806-62 | Automotive Cigarette Lighter/12 Volt DC Adapter | | | | | 2000-1371 | Ethernet Cable | 760-229 | Transit Case for Anritsu MS2721A Handheld | | | | | 633-44 | Rechargeable battery, Li-lon | | Spectrum Analyzer | | | | | 2000-1358 | 64 MB Compact Flash Memory Module | 2300-498 | Anritsu Master Software Tools CD ROM | | | | | 64343 | Tilt Bail | 10580-00103 | Anritsu HHSA User's Guide, Model MS2721A | | | | | 1091-172 | Adapter, N(m) to B(f), 50Ω | 10580-00104 | Anritsu HHSA Programming Manual, | | | | | 1091-27 | Adapter, N(m) to SMA(f), 50Ω | | Model MS2721A | | | | | One Year Warranty | | 10580-00105 | Anritsu HHSA Maintenance Manual, | | | | Certificate of Calibration and Conformance | | ration and Conformance | | Model MS2721A | | | | | | | 633-44 | Rechargeable battery, Li-Ion | | | | | Optional Accessor | ies | 2000-1374 | Dual External, Li-lon charger with universal | | | | • | | 30 dB, 50 Watt, Bi-directional, DC to 18 GHz, | | power supply | | | | | | N(m) to N(f) Attenuator | 2000-1030 | Portable antenna, 50Ω, SMA(m) 1.71-1.88 GHz | | | | | 34NN50A | Precision Adapter, DC to 18 GHz, 50Ω, | 2000-1031 | Portable antenna, 50Ω, SMA(m) 1.85-1.99 GHz | | | | | | N(m) to N(m) | 2000-1032 | Portable antenna, 50Ω, SMA(m) 2.4-2.5 GHz | | | | | 34NFNF50 | Precision Adapter, DC to 18 GHz, 50Ω , N(f) to N(f) | 2000-1035 | Portable antenna, 50Ω, SMA(m) 896-941 MHz | | | | | 15NNF50-1.5B | Test port cable, armored, 1.5 meter N(m) to N(f) | 2000-1200 | Portable antenna, 50Ω, SMA(m) 806-869 MHz | | | | | | 18 GHz | 2000-1361 | Portable antenna, 50Ω , SMA(m) $5725-5825$ MHz | | | | | 15ND50-1.5C | Test port cable armored, 1.5 meter, N(m) to | 2000-1358 | 64 MB Compact Flash Memory Module | | | | | | 7/16 DIN(m), 6.0 GHz | | | | | | 15NDF50-1.5C | | Test port cable armored, 1.5 meter, N(m) to | Directional Anteni | nas | | | | | | 7/16 DIN(f), 6.0 GHz | 2000-1411 | Portable Yagi antenna, 10 dBd, N(f) 822-900 MHz | | | | | 510-90 | Adapter, 7/16 DIN(f) to N(m), DC to 7.5 GHz, 50Ω | 2000-1412 | Portable Yagi antenna, 10 dBd, N(f) 885-975 MHz | | | | | 510-91 | Adapter, 7/16 DIN(f)-N(f), DC to 7.5 GHz, 50Ω | 2000-1413 | Portable Yagi antenna, 10 dBd, N(f) 1.71-1.88 GHz | | | | | 510-92 | Adapter, 7/16 DIN(m)-N(m), DC to 7.5 GHz, 50Ω | 2000-1414 | Portable Yagi antenna, 9.3 dBd, N(f) 1.85-1.99 GHz | | | | | 510-93 | Adapter, 7/16 DIN(m)-N(f), DC to 7.5 GHz, 50Ω | 2000-1415 | Portable Yagi antenna, 10 dBd, N(f) 2.4-2.5 GHz | | | | | 510-96 | Adapter 7/16 DIN(m) to 7/16 DIN(m), | 2000-1416 | Portable Yagi antenna, 10 dBd, N(f) 1.92-2.23 GHz | | | | | | DC to 7.5 GHz, 50Ω | | | | | | | 1030-86 | Band Pass Filter, 800 MHz band, 806-869 MHz, | | | | | Loss = 1.7 dB, N(m)-SMA(f) United States (800) ANRITSU Canada (800) ANRITSU South America 55 (21) 2527-6922 Europe 44 (0) 1582-433433 Japan 81 (46) 223-1111 Asia-Pacific (852) 2301-4980 Microwave Measurement Division 490 Jarvis Drive, Morgan Hill, CA 95037-2809 http://www.us.anritsu.com